LS
Laksshman Sundaram
Author with expertise in Comprehensive Integration of Single-Cell Transcriptomic Data
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
4
(75% Open Access)
Cited by:
348
h-index:
10
/
i10-index:
11
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Predicting the clinical impact of human mutation with deep neural networks

Laksshman Sundaram et al.Jul 19, 2018
+11
S
H
L
Millions of human genomes and exomes have been sequenced, but their clinical applications remain limited due to the difficulty of distinguishing disease-causing mutations from benign genetic variation. Here we demonstrate that common missense variants in other primate species are largely clinically benign in human, enabling pathogenic mutations to be systematically identified by the process of elimination. Using hundreds of thousands of common variants from population sequencing of six non-human primate species, we train a deep neural network that identifies pathogenic mutations in rare disease patients with 88% accuracy and enables the discovery of 14 new candidate genes in intellectual disability at genome-wide significance. Cataloging common variation from additional primate species would improve interpretation for millions of variants of uncertain significance, further advancing the clinical utility of human genome sequencing. Using common variants in six non-human primate species, the authors train a deep neural network that identifies pathogenic mutations in patients with rare disease with 88% accuracy and enables the discovery of 14 new candidate genes in intellectual disability.
0
Citation346
0
Save
7

Integrative single-cell analysis of cardiogenesis identifies developmental trajectories and non-coding mutations in congenital heart disease

Mohamed Ameen et al.Jun 29, 2022
+19
M
L
M
Summary Congenital heart defects, the most common birth disorders, are the clinical manifestation of anomalies in fetal heart development - a complex process involving dynamic spatiotemporal coordination among various precursor cell lineages. This complexity underlies the incomplete understanding of the genetic architecture of congenital heart diseases (CHDs). To define the multi-cellular epigenomic and transcriptional landscape of cardiac cellular development, we generated single-cell chromatin accessibility maps of human fetal heart tissues. We identified eight major differentiation trajectories involving primary cardiac cell types, each associated with dynamic transcription factor (TF) activity signatures. We identified similarities and differences of regulatory landscapes of iPSC-derived cardiac cell types and their in vivo counterparts. We interpreted deep learning models that predict cell-type resolved, base-resolution chromatin accessibility profiles from DNA sequence to decipher underlying TF motif lexicons and infer the regulatory impact of non-coding variants. De novo mutations predicted to affect chromatin accessibility in arterial endothelium were enriched in CHD cases versus controls. We used CRISPR-based perturbations to validate an enhancer harboring a nominated regulatory CHD mutation, linking it to effects on the expression of a known CHD gene JARID2 . Together, this work defines the cell-type resolved cis-regulatory sequence determinants of heart development and identifies disruption of cell type-specific regulatory elements as a component of the genetic etiology of CHD.
7
Citation2
0
Save
5

Transcription factor stoichiometry, motif affinity and syntax regulate single-cell chromatin dynamics during fibroblast reprogramming to pluripotency

Surag Nair et al.Jan 1, 2023
+9
L
M
S
Ectopic expression of OCT4, SOX2, KLF4 and MYC (OSKM) transforms differentiated cells into induced pluripotent stem cells. To refine our mechanistic understanding of reprogramming, especially during the early stages, we profiled chromatin accessibility and gene expression at single-cell resolution across a finely sampled time course of human fibroblast reprogramming. Using neural networks that map DNA sequence to ATAC-seq profiles at base-resolution, we annotated cell-state-specific predictive transcription factor (TF) motif syntax in regulatory elements, inferred affinity- and concentration-dependent dynamics of Tn5-bias corrected TF footprints, linked peaks to putative target genes, and elucidated rewiring of TF-to-gene cis-regulatory networks. Our models reveal that early in reprogramming, OSK, at supraphysiological concentrations, rapidly open transient regulatory elements by occupying non-canonical low-affinity binding sites. As OSK concentration falls, the accessibility of these transient elements decays as a function of motif affinity. We find that these OSK-dependent transient elements sequester the somatic TF AP-1. This redistribution is strongly associated with the silencing of fibroblast-specific genes within individual nuclei. Together, our integrated single-cell resource and models reveal insights into the cis-regulatory code of reprogramming at unprecedented resolution, connect TF stoichiometry and motif syntax to diversification of cell fate trajectories, and provide new perspectives on the dynamics and role of transient regulatory elements in somatic silencing.
119

Chromatin and gene-regulatory dynamics of the developing human cerebral cortex at single-cell resolution

Alexandro Trevino et al.Dec 30, 2020
+9
J
F
A
ABSTRACT Genetic perturbations of cerebral cortical development can lead to neurodevelopmental disease, including autism spectrum disorder (ASD). To identify genomic regions crucial to corticogenesis, we mapped the activity of gene-regulatory elements generating a single-cell atlas of gene expression and chromatin accessibility both independently and jointly. This revealed waves of gene regulation by key transcription factors (TFs) across a nearly continuous differentiation trajectory into glutamatergic neurons, distinguished the expression programs of glial lineages, and identified lineage-determining TFs that exhibited strong correlation between linked gene-regulatory elements and expression levels. These highly connected genes adopted an active chromatin state in early differentiating cells, consistent with lineage commitment. Basepair-resolution neural network models identified strong cell-type specific enrichment of noncoding mutations predicted to be disruptive in a cohort of ASD subjects and identified frequently disrupted TF binding sites. This approach illustrates how cell-type specific mapping can provide insights into the programs governing human development and disease.