RN
Ramil Nurtdinov
Author with expertise in Regulation of RNA Processing and Function
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
6
(67% Open Access)
Cited by:
246
h-index:
18
/
i10-index:
21
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
6

Paired guide RNA CRISPR-Cas9 screening for protein-coding genes and lncRNAs involved in transdifferentiation of human B-cells to macrophages

Sebastian Ullrich et al.Apr 27, 2021
ABSTRACT CRISPR-Cas9 screening libraries have arisen as a powerful tool to identify both protein coding (pc) and non-coding genes playing a role along different processes. In particular, the usage of a nuclease active Cas9 coupled to a single gRNA has proven to efficiently impair the expression of pc-genes by generating deleterious frameshifts. Here, we first demonstrate that the usage of a second gRNA targeting the same gene synergistically enhances the capacity of the CRISPR-Cas9 system to knock out pc-genes. We next take advantage of our paired-guide (pgRNA) system to design a library to simultaneously target 874 pc-genes and 166 lncRNAs which are known to change expression during the transdifferentiation from pre-B cells to macrophages. We show that this system is able to identify known players in this process, and also predicts 26 potential novel ones, of which we select four for deeper characterization. Two of these, FURIN and NFE2 , code for proteins related to cell differentiation and macrophage function; the other two, LINC02432 and MIR3945HG , are lncRNAs associated with cancerous and infectious diseases, respectively. The CRISPR-Cas9 coupled to pgRNAs system is, therefore, a suitable tool to target simultaneously pc-genes and lncRNAs for genomic perturbation assays.
6
Citation1
0
Save
11

Alu-mediated weak CEBPA binding and slow B cell transdifferentiation in human

Ramil Nurtdinov et al.Oct 29, 2021
Abstract Many developmental and differentiation processes take substantially longer in human than in mouse. To investigate the molecular mechanisms underlying this phenomenon, here we have specifically focused on the transdifferentiation from B cells to macrophages. The process is triggered by exactly the same molecular mechanism -- the induction by the transcription factor (TF) CEBPA -- but takes three days in mouse and seven in human ( 1, 2 ). In mouse, the speed of this process is known to be associated with Myc expression ( 3 ). We found that in this species, CEBPA binds strongly to the Myc promoter, efficiently down-regulating Myc . In human, in contrast, CEBPA does not bind this promoter, and MYC is indirectly and more slowly down-regulated. Attenuation of CEBPA binding is not specific to the MYC promoter, but a general trait of the human genome across multiple biological conditions. We traced back weak CEBPA binding to the primate-specific Alu repeat expansion. Many Alu repeats carry strong CEBPA binding motifs, which sequester CEBPA, and attenuate CEBPA binding genome-wide. We observed similar CEBPA and MYC dynamics in natural processes regulated by CEBPA, suggesting that CEBPA attenuation could underlie the longer duration in human processes controlled by this factor. Our work highlights the highly complex mode in which biological information is encoded in genome sequences, evolutionarily connecting, in an unexpected way, lineage-specific transposable element expansions to species-specific changes in developmental tempos.
11
Citation1
0
Save
0

An encyclopedia of enhancer-gene regulatory interactions in the human genome

Andreas Gschwind et al.Jan 1, 2023
Identifying transcriptional enhancers and their target genes is essential for understanding gene regulation and the impact of human genetic variation on disease. Here we create and evaluate a resource of >13 million enhancer-gene regulatory interactions across 352 cell types and tissues, by integrating predictive models, measurements of chromatin state and 3D contacts, and large-scale genetic perturbations generated by the ENCODE Consortium. We first create a systematic benchmarking pipeline to compare predictive models, assembling a dataset of 10,411 element-gene pairs measured in CRISPR perturbation experiments, >30,000 fine-mapped eQTLs, and 569 fine-mapped GWAS variants linked to a likely causal gene. Using this framework, we develop a new predictive model, ENCODE-rE2G, that achieves state-of-the-art performance across multiple prediction tasks, demonstrating a strategy involving iterative perturbations and supervised machine learning to build increasingly accurate predictive models of enhancer regulation. Using the ENCODE-rE2G model, we build an encyclopedia of enhancer-gene regulatory interactions in the human genome, which reveals global properties of enhancer networks, identifies differences in the functions of genes that have more or less complex regulatory landscapes, and improves analyses to link noncoding variants to target genes and cell types for common, complex diseases. By interpreting the model, we find evidence that, beyond enhancer activity and 3D enhancer-promoter contacts, additional features guide enhancer-promoter communication including promoter class and enhancer-enhancer synergy. Altogether, these genome-wide maps of enhancer-gene regulatory interactions, benchmarking software, predictive models, and insights about enhancer function provide a valuable resource for future studies of gene regulation and human genetics.