JN
Joseph Nasser
Author with expertise in Regulation of RNA Processing and Function
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
14
(71% Open Access)
Cited by:
1,722
h-index:
15
/
i10-index:
17
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Activity-by-contact model of enhancer–promoter regulation from thousands of CRISPR perturbations

Charles Fulco et al.Nov 29, 2019
Enhancer elements in the human genome control how genes are expressed in specific cell types and harbor thousands of genetic variants that influence risk for common diseases1–4. Yet, we still do not know how enhancers regulate specific genes, and we lack general rules to predict enhancer–gene connections across cell types5,6. We developed an experimental approach, CRISPRi-FlowFISH, to perturb enhancers in the genome, and we applied it to test >3,500 potential enhancer–gene connections for 30 genes. We found that a simple activity-by-contact model substantially outperformed previous methods at predicting the complex connections in our CRISPR dataset. This activity-by-contact model allows us to construct genome-wide maps of enhancer–gene connections in a given cell type, on the basis of chromatin state measurements. Together, CRISPRi-FlowFISH and the activity-by-contact model provide a systematic approach to map and predict which enhancers regulate which genes, and will help to interpret the functions of the thousands of disease risk variants in the noncoding genome. Combining CRISPRi-FlowFISH to perturb enhancers with an activity-by-contact model to predict complex connections allows systematic mapping of enhancer–gene connections in a given cell type, on the basis of chromatin-state measurements.
0
Citation758
0
Save
0

Inherited causes of clonal haematopoiesis in 97,691 whole genomes

Alexander Bick et al.Oct 14, 2020
Age is the dominant risk factor for most chronic human diseases, but the mechanisms through which ageing confers this risk are largely unknown1. The age-related acquisition of somatic mutations that lead to clonal expansion in regenerating haematopoietic stem cell populations has recently been associated with both haematological cancer2–4 and coronary heart disease5—this phenomenon is termed clonal haematopoiesis of indeterminate potential (CHIP)6. Simultaneous analyses of germline and somatic whole-genome sequences provide the opportunity to identify root causes of CHIP. Here we analyse high-coverage whole-genome sequences from 97,691 participants of diverse ancestries in the National Heart, Lung, and Blood Institute Trans-omics for Precision Medicine (TOPMed) programme, and identify 4,229 individuals with CHIP. We identify associations with blood cell, lipid and inflammatory traits that are specific to different CHIP driver genes. Association of a genome-wide set of germline genetic variants enabled the identification of three genetic loci associated with CHIP status, including one locus at TET2 that was specific to individuals of African ancestry. In silico-informed in vitro evaluation of the TET2 germline locus enabled the identification of a causal variant that disrupts a TET2 distal enhancer, resulting in increased self-renewal of haematopoietic stem cells. Overall, we observe that germline genetic variation shapes haematopoietic stem cell function, leading to CHIP through mechanisms that are specific to clonal haematopoiesis as well as shared mechanisms that lead to somatic mutations across tissues. Analysis of 97,691 high-coverage human blood DNA-derived whole-genome sequences enabled simultaneous identification of germline and somatic mutations that predispose individuals to clonal expansion of haematopoietic stem cells, indicating that both inherited and acquired mutations are linked to age-related cancers and coronary heart disease.
0
Citation472
0
Save
0

Genome-wide enhancer maps link risk variants to disease genes

Joseph Nasser et al.Apr 7, 2021
Genome-wide association studies (GWAS) have identified thousands of noncoding loci that are associated with human diseases and complex traits, each of which could reveal insights into the mechanisms of disease1. Many of the underlying causal variants may affect enhancers2,3, but we lack accurate maps of enhancers and their target genes to interpret such variants. We recently developed the activity-by-contact (ABC) model to predict which enhancers regulate which genes and validated the model using CRISPR perturbations in several cell types4. Here we apply this ABC model to create enhancer-gene maps in 131 human cell types and tissues, and use these maps to interpret the functions of GWAS variants. Across 72 diseases and complex traits, ABC links 5,036 GWAS signals to 2,249 unique genes, including a class of 577 genes that appear to influence multiple phenotypes through variants in enhancers that act in different cell types. In inflammatory bowel disease (IBD), causal variants are enriched in predicted enhancers by more than 20-fold in particular cell types such as dendritic cells, and ABC achieves higher precision than other regulatory methods at connecting noncoding variants to target genes. These variant-to-function maps reveal an enhancer that contains an IBD risk variant and that regulates the expression of PPIF to alter the membrane potential of mitochondria in macrophages. Our study reveals principles of genome regulation, identifies genes that affect IBD and provides a resource and generalizable strategy to connect risk variants of common diseases to their molecular and cellular functions.
0
Citation439
0
Save
0

Inherited Causes of Clonal Hematopoiesis of Indeterminate Potential in TOPMed Whole Genomes

Alexander Bick et al.Sep 27, 2019
ABSTRACT Age is the dominant risk factor for most chronic human diseases; yet the mechanisms by which aging confers this risk are largely unknown. 1 Recently, the age-related acquisition of somatic mutations in regenerating hematopoietic stem cell populations was associated with both hematologic cancer incidence 2–4 and coronary heart disease prevalence. 5 Somatic mutations with leukemogenic potential may confer selective cellular advantages leading to clonal expansion, a phenomenon termed ‘Clonal Hematopoiesis of Indeterminate Potential’ (CHIP). 6 Simultaneous germline and somatic whole genome sequence analysis now provides the opportunity to identify root causes of CHIP. Here, we analyze high-coverage whole genome sequences from 97,691 participants of diverse ancestries in the NHLBI TOPMed program and identify 4,229 individuals with CHIP. We identify associations with blood cell, lipid, and inflammatory traits specific to different CHIP genes. Association of a genome-wide set of germline genetic variants identified three genetic loci associated with CHIP status, including one locus at TET2 that was African ancestry specific. In silico -informed in vitro evaluation of the TET2 germline locus identified a causal variant that disrupts a TET2 distal enhancer. Aggregates of rare germline loss-of-function variants in CHEK2 , a DNA damage repair gene, predisposed to CHIP acquisition. Overall, we observe that germline genetic variation altering hematopoietic stem cell function and the fidelity of DNA-damage repair increase the likelihood of somatic mutations leading to CHIP.
0
Citation22
0
Save
1

Genome-wide maps of enhancer regulation connect risk variants to disease genes

Joseph Nasser et al.Sep 3, 2020
Abstract Genome-wide association studies have now identified tens of thousands of noncoding loci associated with human diseases and complex traits, each of which could reveal insights into biological mechanisms of disease. Many of the underlying causal variants are thought to affect enhancers, but we have lacked genome-wide maps of enhancer-gene regulation to interpret such variants. We previously developed the Activity-by-Contact (ABC) Model to predict enhancer-gene connections and demonstrated that it can accurately predict the results of CRISPR perturbations across several cell types. Here, we apply this ABC Model to create enhancer-gene maps in 131 cell types and tissues, and use these maps to interpret the functions of fine-mapped GWAS variants. For inflammatory bowel disease (IBD), causal variants are >20-fold enriched in enhancers in particular cell types, and ABC outperforms other regulatory methods at connecting noncoding variants to target genes. Across 72 diseases and complex traits, ABC links 5,036 GWAS signals to 2,249 unique genes, including a class of 577 genes that appear to influence multiple phenotypes via variants in enhancers that act in different cell types. Guided by these variant-to-function maps, we show that an enhancer containing an IBD risk variant regulates the expression of PPIF to tune mitochondrial membrane potential. Together, our study reveals insights into principles of genome regulation, illuminates mechanisms that influence IBD, and demonstrates a generalizable strategy to connect common disease risk variants to their molecular and cellular functions.
1
Citation10
0
Save
14

Integrative approaches to improve the informativeness of deep learning models for human complex diseases

Kushal Dey et al.Sep 9, 2020
Abstract Deep learning models have achieved great success in predicting genome-wide regulatory effects from DNA sequence, but recent work has reported that SNP annotations derived from these predictions contribute limited unique information for human complex disease. Here, we explore three integrative approaches to improve the disease informativeness of allelic-effect annotations (predicted difference between reference and variant alleles) constructed using several previously trained deep learning models: DeepSEA, Basenji and DeepBind (and a related machine learning model, deltaSVM). First, we employ gradient boosting to learn optimal combinations of deep learning annotations, using fine-mapped SNPs and matched control SNPs (on held-out chromosomes) for training. Second, we improve the specificity of these annotations by restricting them to SNPs implicated by (proximal and distal) SNP-to-gene (S2G) linking strategies, e.g. prioritizing SNPs involved in gene regulation. Third, we predict gene expression (and derive allelic-effect annotations) from deep learning annotations at SNPs implicated by S2G linking strategies — generalizing the previously proposed ExPecto approach, which incorporates deep learning annotations based on distance to TSS. We evaluated these approaches using stratified LD score regression, using functional data in blood and focusing on 11 autoimmune diseases and blood-related traits (average N =306K). We determined that the three approaches produced SNP annotations that were uniquely informative for these diseases/traits, despite the fact that linear combinations of the underlying DeepSEA, Basenji, DeepBind and deltaSVM blood annotations were not uniquely informative for these diseases/traits. Our results highlight the benefits of integrating SNP annotations produced by deep learning models with other types of data, including data linking SNPs to genes.
14
Citation4
0
Save
20

SNP-to-gene linking strategies reveal contributions of enhancer-related and candidate master-regulator genes to autoimmune disease

Kushal Dey et al.Sep 3, 2020
Abstract Gene regulation is known to play a fundamental role in human disease, but mechanisms of regulation vary greatly across genes. Here, we explore the contributions to disease of two types of genes: genes whose regulation is driven by enhancer regions as opposed to promoter regions (enhancer-related) and genes that regulate other genes in trans (candidate master-regulator). We link these genes to SNPs using a comprehensive set of SNP-to-gene (S2G) strategies and apply stratified LD score regression to the resulting SNP annotations to draw three main conclusions about 11 autoimmune diseases and blood cell traits (average N case =13K across 6 autoimmune diseases, average N =443K across 5 blood cell traits). First, several characterizations of enhancer-related genes defined in blood using functional genomics data (e.g. ATAC-seq, RNA-seq, PC-HiC) are conditionally informative for autoimmune disease heritability, after conditioning on a broad set of regulatory annotations from the baseline-LD model. Second, candidate master-regulator genes defined using trans-eQTL in blood are also conditionally informative for autoimmune disease heritability. Third, integrating enhancer-related and candidate master-regulator gene sets with protein-protein interaction (PPI) network information magnified their disease signal. The resulting PPI-enhancer gene score produced > 2x stronger conditional signal (maximum standardized SNP annotation effect size ( τ * ) = 2.0 (s.e. 0.3) vs. 0.91 (s.e. 0.21)), and > 2x stronger gene-level enrichment for approved autoimmune disease drug targets (5.3x vs. 2.1x), as compared to the recently proposed Enhancer Domain Score (EDS). In each case, using functionally informed S2G strategies to link genes to SNPs that may regulate them produced much stronger disease signals (4.1x-13x larger τ * values) than conventional window-based S2G strategies. We conclude that our characterizations of enhancer-related and candidate master-regulator genes identify gene sets that are important for autoimmune disease, and that combining those gene sets with functionally informed S2G strategies enables us to identify SNP annotations in which disease heritability is concentrated.
20
Citation4
0
Save
1

Compatibility logic of human enhancer and promoter sequences

Drew Bergman et al.Oct 24, 2021
Abstract Gene regulation in the human genome is controlled by distal enhancers that activate specific nearby promoters. One model for the specificity of enhancer-promoter regulation is that different promoters might have sequence-encoded preferences for distinct classes of enhancers, for example mediated by interacting sets of transcription factors or cofactors. This “biochemical compatibility” model has been supported by observations at individual human promoters and by genome-wide measurements in Drosophila . However, the degree to which human enhancers and promoters are intrinsically compatible or specific has not been systematically measured, and how their activities combine to control RNA expression remains unclear. To address these questions, we designed a high-throughput reporter assay called enhancer x promoter (ExP) STARR-seq and applied it to examine the combinatorial compatibilities of 1,000 enhancer and 1,000 promoter sequences in human K562 cells. We identify a simple logic for enhancer-promoter compatibility – virtually all enhancers activated all promoters by similar amounts, and intrinsic enhancer and promoter activities combine multiplicatively to determine RNA output ( R 2 =0.82). In addition, two classes of enhancers and promoters showed subtle preferential effects. Promoters of housekeeping genes contained built-in activating sequences, corresponding to motifs for factors such as GABPA and YY1, that correlated with both stronger autonomous promoter activity and enhancer activity, and weaker responsiveness to distal enhancers. Promoters of context-specific genes lacked these motifs and showed stronger responsiveness to enhancers. Together, this systematic assessment of enhancer-promoter compatibility suggests a multiplicative model tuned by enhancer and promoter class to control gene transcription in the human genome.
1
Citation3
0
Save
0

An encyclopedia of enhancer-gene regulatory interactions in the human genome

Andreas Gschwind et al.Jan 1, 2023
Identifying transcriptional enhancers and their target genes is essential for understanding gene regulation and the impact of human genetic variation on disease. Here we create and evaluate a resource of >13 million enhancer-gene regulatory interactions across 352 cell types and tissues, by integrating predictive models, measurements of chromatin state and 3D contacts, and large-scale genetic perturbations generated by the ENCODE Consortium. We first create a systematic benchmarking pipeline to compare predictive models, assembling a dataset of 10,411 element-gene pairs measured in CRISPR perturbation experiments, >30,000 fine-mapped eQTLs, and 569 fine-mapped GWAS variants linked to a likely causal gene. Using this framework, we develop a new predictive model, ENCODE-rE2G, that achieves state-of-the-art performance across multiple prediction tasks, demonstrating a strategy involving iterative perturbations and supervised machine learning to build increasingly accurate predictive models of enhancer regulation. Using the ENCODE-rE2G model, we build an encyclopedia of enhancer-gene regulatory interactions in the human genome, which reveals global properties of enhancer networks, identifies differences in the functions of genes that have more or less complex regulatory landscapes, and improves analyses to link noncoding variants to target genes and cell types for common, complex diseases. By interpreting the model, we find evidence that, beyond enhancer activity and 3D enhancer-promoter contacts, additional features guide enhancer-promoter communication including promoter class and enhancer-enhancer synergy. Altogether, these genome-wide maps of enhancer-gene regulatory interactions, benchmarking software, predictive models, and insights about enhancer function provide a valuable resource for future studies of gene regulation and human genetics.
Load More