JN
Joseph Nasser
Author with expertise in Regulation of RNA Processing and Function
Broad Institute, Harvard University, Center for Systems Biology
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
11
(64% Open Access)
Cited by:
46
h-index:
13
/
i10-index:
15
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Inherited Causes of Clonal Hematopoiesis of Indeterminate Potential in TOPMed Whole Genomes

Alexander Bick et al.May 6, 2020
+120
S
J
A
ABSTRACT Age is the dominant risk factor for most chronic human diseases; yet the mechanisms by which aging confers this risk are largely unknown. 1 Recently, the age-related acquisition of somatic mutations in regenerating hematopoietic stem cell populations was associated with both hematologic cancer incidence 2–4 and coronary heart disease prevalence. 5 Somatic mutations with leukemogenic potential may confer selective cellular advantages leading to clonal expansion, a phenomenon termed ‘Clonal Hematopoiesis of Indeterminate Potential’ (CHIP). 6 Simultaneous germline and somatic whole genome sequence analysis now provides the opportunity to identify root causes of CHIP. Here, we analyze high-coverage whole genome sequences from 97,691 participants of diverse ancestries in the NHLBI TOPMed program and identify 4,229 individuals with CHIP. We identify associations with blood cell, lipid, and inflammatory traits specific to different CHIP genes. Association of a genome-wide set of germline genetic variants identified three genetic loci associated with CHIP status, including one locus at TET2 that was African ancestry specific. In silico -informed in vitro evaluation of the TET2 germline locus identified a causal variant that disrupts a TET2 distal enhancer. Aggregates of rare germline loss-of-function variants in CHEK2 , a DNA damage repair gene, predisposed to CHIP acquisition. Overall, we observe that germline genetic variation altering hematopoietic stem cell function and the fidelity of DNA-damage repair increase the likelihood of somatic mutations leading to CHIP.
0
Citation22
0
Save
1

Genome-wide maps of enhancer regulation connect risk variants to disease genes

Joseph Nasser et al.Oct 24, 2023
+27
C
D
J
Abstract Genome-wide association studies have now identified tens of thousands of noncoding loci associated with human diseases and complex traits, each of which could reveal insights into biological mechanisms of disease. Many of the underlying causal variants are thought to affect enhancers, but we have lacked genome-wide maps of enhancer-gene regulation to interpret such variants. We previously developed the Activity-by-Contact (ABC) Model to predict enhancer-gene connections and demonstrated that it can accurately predict the results of CRISPR perturbations across several cell types. Here, we apply this ABC Model to create enhancer-gene maps in 131 cell types and tissues, and use these maps to interpret the functions of fine-mapped GWAS variants. For inflammatory bowel disease (IBD), causal variants are >20-fold enriched in enhancers in particular cell types, and ABC outperforms other regulatory methods at connecting noncoding variants to target genes. Across 72 diseases and complex traits, ABC links 5,036 GWAS signals to 2,249 unique genes, including a class of 577 genes that appear to influence multiple phenotypes via variants in enhancers that act in different cell types. Guided by these variant-to-function maps, we show that an enhancer containing an IBD risk variant regulates the expression of PPIF to tune mitochondrial membrane potential. Together, our study reveals insights into principles of genome regulation, illuminates mechanisms that influence IBD, and demonstrates a generalizable strategy to connect common disease risk variants to their molecular and cellular functions.
1
Citation10
0
Save
4

KLF4 Recruits SWI/SNF to Increase Chromatin Accessibility and Reprogram the Endothelial Enhancer Landscape under Laminar Shear Stress

Jan-Renier Moonen et al.Oct 24, 2023
+13
M
J
J
Abstract Physiologic laminar shear stress (LSS) induces an endothelial gene expression profile that is vasculo-protective. In this report, we delineate how LSS mediates changes in the epigenetic landscape to promote this beneficial response. We show that under LSS, KLF4 interacts with the SWI/SNF nucleosome remodeling complex to increase accessibility at enhancer sites that promote expression of homeostatic endothelial genes. By combining molecular and computational approaches we discovered enhancers that loop to promoters of known and novel KLF4- and LSS-responsive genes that stabilize endothelial cells and suppress inflammation, such as BMPR2 and DUSP5 . By linking enhancers to genes that they regulate under physiologic LSS, our work establishes a foundation for interpreting how non-coding DNA variants in these regions might disrupt protective gene expression to influence vascular disease.
4
Citation5
0
Save
20

SNP-to-gene linking strategies reveal contributions of enhancer-related and candidate master-regulator genes to autoimmune disease

Kushal Dey et al.Oct 24, 2023
+4
B
S
K
Abstract Gene regulation is known to play a fundamental role in human disease, but mechanisms of regulation vary greatly across genes. Here, we explore the contributions to disease of two types of genes: genes whose regulation is driven by enhancer regions as opposed to promoter regions (enhancer-related) and genes that regulate other genes in trans (candidate master-regulator). We link these genes to SNPs using a comprehensive set of SNP-to-gene (S2G) strategies and apply stratified LD score regression to the resulting SNP annotations to draw three main conclusions about 11 autoimmune diseases and blood cell traits (average N case =13K across 6 autoimmune diseases, average N =443K across 5 blood cell traits). First, several characterizations of enhancer-related genes defined in blood using functional genomics data (e.g. ATAC-seq, RNA-seq, PC-HiC) are conditionally informative for autoimmune disease heritability, after conditioning on a broad set of regulatory annotations from the baseline-LD model. Second, candidate master-regulator genes defined using trans-eQTL in blood are also conditionally informative for autoimmune disease heritability. Third, integrating enhancer-related and candidate master-regulator gene sets with protein-protein interaction (PPI) network information magnified their disease signal. The resulting PPI-enhancer gene score produced > 2x stronger conditional signal (maximum standardized SNP annotation effect size ( τ * ) = 2.0 (s.e. 0.3) vs. 0.91 (s.e. 0.21)), and > 2x stronger gene-level enrichment for approved autoimmune disease drug targets (5.3x vs. 2.1x), as compared to the recently proposed Enhancer Domain Score (EDS). In each case, using functionally informed S2G strategies to link genes to SNPs that may regulate them produced much stronger disease signals (4.1x-13x larger τ * values) than conventional window-based S2G strategies. We conclude that our characterizations of enhancer-related and candidate master-regulator genes identify gene sets that are important for autoimmune disease, and that combining those gene sets with functionally informed S2G strategies enables us to identify SNP annotations in which disease heritability is concentrated.
20
Citation4
0
Save
14

Integrative approaches to improve the informativeness of deep learning models for human complex diseases

Kushal Dey et al.Oct 24, 2023
+3
S
S
K
Abstract Deep learning models have achieved great success in predicting genome-wide regulatory effects from DNA sequence, but recent work has reported that SNP annotations derived from these predictions contribute limited unique information for human complex disease. Here, we explore three integrative approaches to improve the disease informativeness of allelic-effect annotations (predicted difference between reference and variant alleles) constructed using several previously trained deep learning models: DeepSEA, Basenji and DeepBind (and a related machine learning model, deltaSVM). First, we employ gradient boosting to learn optimal combinations of deep learning annotations, using fine-mapped SNPs and matched control SNPs (on held-out chromosomes) for training. Second, we improve the specificity of these annotations by restricting them to SNPs implicated by (proximal and distal) SNP-to-gene (S2G) linking strategies, e.g. prioritizing SNPs involved in gene regulation. Third, we predict gene expression (and derive allelic-effect annotations) from deep learning annotations at SNPs implicated by S2G linking strategies — generalizing the previously proposed ExPecto approach, which incorporates deep learning annotations based on distance to TSS. We evaluated these approaches using stratified LD score regression, using functional data in blood and focusing on 11 autoimmune diseases and blood-related traits (average N =306K). We determined that the three approaches produced SNP annotations that were uniquely informative for these diseases/traits, despite the fact that linear combinations of the underlying DeepSEA, Basenji, DeepBind and deltaSVM blood annotations were not uniquely informative for these diseases/traits. Our results highlight the benefits of integrating SNP annotations produced by deep learning models with other types of data, including data linking SNPs to genes.
1

Compatibility logic of human enhancer and promoter sequences

Drew Bergman et al.Oct 24, 2023
+9
V
T
D
Abstract Gene regulation in the human genome is controlled by distal enhancers that activate specific nearby promoters. One model for the specificity of enhancer-promoter regulation is that different promoters might have sequence-encoded preferences for distinct classes of enhancers, for example mediated by interacting sets of transcription factors or cofactors. This “biochemical compatibility” model has been supported by observations at individual human promoters and by genome-wide measurements in Drosophila . However, the degree to which human enhancers and promoters are intrinsically compatible or specific has not been systematically measured, and how their activities combine to control RNA expression remains unclear. To address these questions, we designed a high-throughput reporter assay called enhancer x promoter (ExP) STARR-seq and applied it to examine the combinatorial compatibilities of 1,000 enhancer and 1,000 promoter sequences in human K562 cells. We identify a simple logic for enhancer-promoter compatibility – virtually all enhancers activated all promoters by similar amounts, and intrinsic enhancer and promoter activities combine multiplicatively to determine RNA output ( R 2 =0.82). In addition, two classes of enhancers and promoters showed subtle preferential effects. Promoters of housekeeping genes contained built-in activating sequences, corresponding to motifs for factors such as GABPA and YY1, that correlated with both stronger autonomous promoter activity and enhancer activity, and weaker responsiveness to distal enhancers. Promoters of context-specific genes lacked these motifs and showed stronger responsiveness to enhancers. Together, this systematic assessment of enhancer-promoter compatibility suggests a multiplicative model tuned by enhancer and promoter class to control gene transcription in the human genome.
1
Citation2
0
Save
115

HyPR-seq: Single-cell quantification of chosen RNAs via hybridization and sequencing of DNA probes

Jamie Marshall et al.Oct 24, 2023
+14
V
B
J
ABSTRACT Single-cell quantification of RNAs is important for understanding cellular heterogeneity and gene regulation, yet current approaches suffer from low sensitivity for individual transcripts, limiting their utility for many applications. Here we present Hybridization of Probes to RNA for sequencing (HyPR-seq), a method to sensitively quantify the expression of up to 100 chosen genes in single cells. HyPR-seq involves hybridizing DNA probes to RNA, distributing cells into nanoliter droplets, amplifying the probes with PCR, and sequencing the amplicons to quantify the expression of chosen genes. HyPR-seq achieves high sensitivity for individual transcripts, detects nonpolyadenylated and low-abundance transcripts, and can profile more than 100,000 single cells. We demonstrate how HyPR-seq can profile the effects of CRISPR perturbations in pooled screens, detect time-resolved changes in gene expression via measurements of gene introns, and detect rare transcripts and quantify cell type frequencies in tissue using low-abundance marker genes. By directing sequencing power to genes of interest and sensitively quantifying individual transcripts, HyPR-seq reduces costs by up to 100-fold compared to whole-transcriptome scRNA-seq, making HyPR-seq a powerful method for targeted RNA profiling in single cells.
0

Activity-by-Contact model of enhancer specificity from thousands of CRISPR perturbations

Charles Fulco et al.May 6, 2020
+15
T
J
C
Mammalian genomes harbor millions of noncoding elements called enhancers that quantitatively regulate gene expression, but it remains unclear which enhancers regulate which genes. Here we describe an experimental approach, based on CRISPR interference, RNA FISH, and flow cytometry (CRISPRi-FlowFISH), to perturb enhancers in the genome, and apply it to test >3,000 potential regulatory enhancer-gene connections across multiple genomic loci. A simple equation based on a mechanistic model for enhancer function performed remarkably well at predicting the complex patterns of regulatory connections we observe in our CRISPR dataset. This Activity-by-Contact (ABC) model involves multiplying measures of enhancer activity and enhancer-promoter 3D contacts, and can predict enhancer-gene connections in a given cell type based on chromatin state maps. Together, CRISPRi-FlowFISH and the ABC model provide a systematic approach to map and predict which enhancers regulate which genes, and will help to interpret the functions of the thousands of disease risk variants in the noncoding genome.
0

Detecting genome-wide directional effects of transcription factor binding on polygenic disease risk

Yakir Reshef et al.May 6, 2020
+16
D
H
Y
Biological interpretation of GWAS data frequently involves analyzing unsigned genomic annotations comprising SNPs involved in a biological process and assessing enrichment for disease signal. However, it is often possible to generate signed annotations quantifying whether each SNP allele promotes or hinders a biological process, e.g., binding of a transcription factor (TF). Directional effects of such annotations on disease risk enable stronger statements about causal mechanisms of disease than enrichments of corresponding unsigned annotations. Here we introduce a new method, signed LD profile regression, for detecting such directional effects using GWAS summary statistics, and we apply the method using 382 signed annotations reflecting predicted TF binding. We show via theory and simulations that our method is well-powered and is well-calibrated even when TF binding sites co-localize with other enriched regulatory elements, which can confound unsigned enrichment methods. We further validate our method by showing that it recovers known transcriptional regulators when applied to molecular QTL in blood. We then apply our method to eQTL in 48 GTEx tissues, identifying 651 distinct TF-tissue expression associations at per-tissue FDR<5%, including 30 associations with robust evidence of tissue specificity. Finally, we apply our method to 46 diseases and complex traits (average N=289,617) and identify 77 annotation-trait associations at per-trait FDR<5% representing 12 independent TF-trait associations, and we conduct gene-set enrichment analyses to characterize the underlying transcriptional programs. Our results implicate new causal disease genes (including causal genes at known GWAS loci), and in some cases suggest a detailed mechanism for a causal gene's effect on disease. Our method provides a new way to leverage functional data to draw inferences about disease etiology.
0

Functional disease architectures reveal unique biological role of transposable elements

Farhad Hormozdiari et al.May 7, 2020
+8
J
B
F
Transposable elements (TE) comprise roughly half of the human genome. Though initially derided as ''junk DNA'', they have been widely hypothesized to contribute to the evolution of gene regulation. However, the contribution of TE to the genetic architecture of diseases and complex traits remains unknown. Here, we analyze data from 41 independent diseases and complex traits (average N=320K) to draw three main conclusions. First, TE are uniquely informative for disease heritability. Despite overall depletion for heritability (54% of SNPs, 39±2% of heritability; enrichment of 0.72±0.03; 0.38-1.23 enrichment across four main TE classes), TE explain substantially more heritability than expected based on their depletion for known functional annotations (expected enrichment of 0.35±0.03; 2.11x ratio of true vs. expected enrichment). This implies that TE acquire function in ways that differ from known functional annotations. Second, older TE contribute more to disease heritability, consistent with acquiring biological function; SNPs inside the oldest 20% of TE explain 2.45x more heritability than SNPs inside the youngest 20% of TE. Third, Short Interspersed Nuclear Elements (SINE; one of the four main TE classes) are far more enriched for blood traits (2.05±0.30) than for other traits (0.96±0.09); this difference is far greater than expected based on the weaker depletion of SINEs for regulatory annotations in blood compared to other tissues. Our results elucidate the biological roles that TE play in the genetic architecture of diseases and complex traits.
Load More