SS
Sheila Shanmugan
Author with expertise in Analysis of Brain Functional Connectivity Networks
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
6
(83% Open Access)
Cited by:
15
h-index:
11
/
i10-index:
11
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
64

Personalized Functional Brain Network Topography Predicts Individual Differences in Youth Cognition

Arielle Keller et al.Oct 14, 2022
+22
V
A
A
Abstract Individual differences in cognition during childhood are associated with important social, physical, and mental health outcomes in adolescence and adulthood. Given that cortical surface arealization during development reflects the brain’s functional prioritization, quantifying variation in the topography of functional brain networks across the developing cortex may provide insight regarding individual differences in cognition. We test this idea by defining personalized functional networks (PFNs) that account for interindividual heterogeneity in functional brain network topography in 9-10 year olds from the Adolescent Brain Cognitive Development SM Study. Across matched discovery (n=3,525) and replication (n=3,447) samples, the total cortical representation of fronto-parietal PFNs positively correlated with general cognition. Cross-validated ridge regressions trained on PFN topography predicted cognition across domains, with prediction accuracy increasing along the cortex’s sensorimotor-association organizational axis. These results establish that functional network topography heterogeneity is associated with individual differences in cognition before the critical transition into adolescence.
1

Dissociable Multi-scale Patterns of Development in Personalized Brain Networks

Adam Pines et al.Jul 9, 2021
+20
Z
B
A
SUMMARY The brain is organized into networks at multiple resolutions, or scales, yet studies of functional network development typically focus on a single scale. Here, we derived personalized functional networks across 29 scales in a large sample of youths (n=693, ages 8-23 years) to identify multi-scale patterns of network re-organization related to neurocognitive development. We found that developmental shifts in inter-network coupling systematically adhered to and strengthened a functional hierarchy of cortical organization. Furthermore, we observed that scale-dependent effects were present in lower-order, unimodal networks, but not higher-order, transmodal networks. Finally, we found that network maturation had clear behavioral relevance: the development of coupling in unimodal and transmodal networks dissociably mediated the emergence of executive function. These results delineate maturation of multi-scale brain networks, which varies according to a functional hierarchy and impacts cognitive development.
0

XCP-D: A robust pipeline for the post-processing of fMRI data

Kahini Mehta et al.Jan 1, 2024
+20
T
T
K
Abstract Functional neuroimaging is an essential tool for neuroscience research. Pre-processing pipelines produce standardized, minimally pre-processed data to support a range of potential analyses. However, post-processing is not similarly standardized. While several options for post-processing exist, they may not support output from different pre-processing pipelines, may have limited documentation, and may not follow generally accepted data organization standards (e.g., Brain Imaging Data Structure (BIDS)). In response, we present XCP-D: a collaborative effort between PennLINC at the University of Pennsylvania and the DCAN lab at the University of Minnesota. XCP-D uses an open development model on GitHub and incorporates continuous integration testing; it is distributed as a Docker container or Apptainer image. XCP-D generates denoised BOLD images and functional derivatives from resting-state data in either NIfTI or CIFTI files following pre-processing with fMRIPrep, HCP, or ABCD-BIDS pipelines. Even prior to its official release, XCP-D has been downloaded &gt;5,000 times from DockerHub. Together, XCP-D facilitates robust, scalable, and reproducible post-processing of fMRI data.
1

Generalizable links between symptoms of borderline personality disorder and functional connectivity

Golia Shafiei et al.Aug 6, 2023
+13
D
R
G
ABSTRACT Background Symptoms of borderline personality disorder (BPD) often manifest in adolescence, yet the underlying relationship between these debilitating symptoms and the development of functional brain networks is not well understood. Here we aimed to investigate how multivariate patterns of functional connectivity are associated with symptoms of BPD in a large sample of young adults and adolescents. Methods We used high-quality functional Magnetic Resonance Imaging (fMRI) data from young adults from the Human Connectome Project: Young Adults (HCP-YA; N = 870, ages 22-37 years, 457 female) and youth from the Human Connectome Project: Development (HCP-D; N = 223, age range 16-21 years, 121 female). A previously validated BPD proxy score was derived from the NEO Five Factor Inventory (NEO-FFI). A ridge regression model with 10-fold cross-validation and nested hyperparameter tuning was trained and tested in HCP-YA to predict BPD scores in unseen data from regional functional connectivity, while controlling for in-scanner motion, age, and sex. The trained model was further tested on data from HCP-D without further tuning. Finally, we tested how the connectivity patterns associated with BPD aligned with agerelated changes in connectivity. Results Multivariate functional connectivity patterns significantly predicted out-of-sample BPD proxy scores in unseen data in both young adults (HCP-YA; p perm = 0.001) and older adolescents (HCP-D; p perm = 0.001). Predictive capacity of regions was heterogeneous; the most predictive regions were found in functional systems relevant for emotion regulation and executive function, including the ventral attention network. Finally, regional functional connectivity patterns that predicted BPD proxy scores aligned with those associated with development in youth. Conclusion Individual differences in functional connectivity in developmentally-sensitive regions are associated with the symptoms of BPD.
0

XCP-D: A Robust Pipeline for the post-processing of fMRI data

Kahini Mehta et al.Jan 1, 2023
+18
T
T
K
Functional neuroimaging is an essential tool for neuroscience research. Pre-processing pipelines produce standardized, minimally pre-processed data to support a range of potential analyses. However, post-processing is not similarly standardized. While several options for post-processing exist, they tend not to support output from disparate pre-processing pipelines, may have limited documentation, and may not follow BIDS best practices. Here we present XCP-D, which presents a solution to these issues. XCP-D is a collaborative effort between PennLINC at the University of Pennsylvania and the DCAN lab at the University at Minnesota. XCP-D uses an open development model on GitHub and incorporates continuous integration testing; it is distributed as a Docker container or Singularity image. XCP-D generates denoised BOLD images and functional derivatives from resting-state data in either NifTI or CIFTI files, following pre-processing with fMRIPrep, HCP, and ABCD-BIDS pipelines. Even prior to its official release, XCP-D has been downloaded >3,000 times from DockerHub. Together, XCP-D facilitates robust, scalable, and reproducible post-processing of fMRI data.
0

ComBatLS: A location- and scale-preserving method for multi-site image harmonization

Margaret Gardner et al.Jun 27, 2024
+8
R
R
M
Recent work has leveraged massive datasets and advanced harmonization methods to construct normative models of neuroanatomical features and benchmark individuals' morphology. However, current harmonization tools do not preserve the effects of biological covariates including sex and age on features' variances; this failure may induce error in normative scores, particularly when such factors are distributed unequally across sites. Here, we introduce a new extension of the popular ComBat harmonization method, ComBatLS, that preserves biological variance in features' locations and scales. We use UK Biobank data to show that ComBatLS robustly replicates individuals' normative scores better than other ComBat methods when subjects are assigned to sex-imbalanced synthetic "sites". Additionally, we demonstrate that ComBatLS significantly reduces sex biases in normative scores compared to traditional methods. Finally, we show that ComBatLS successfully harmonizes consortium data collected across over 50 studies. R implementation of ComBatLS is available at https://github.com/andy1764/ComBatFamily.