Comparative methods allow researchers to make inferences about evolutionary processes and patterns from phylogenetic trees. In Bayesian phylogenetics, estimating a phylogeny requires specifying priors on parameters characterizing the branching process and rates of substitution among lineages, in addition to others. However, the effect that the selection of these priors has on the inference of comparative parameters has not been thoroughly investigated. Such uncertainty may systematically bias phylogenetic reconstruction and, subsequently, parameter estimation. Here, we focus on the impact of priors in Bayesian phylogenetic inference and evaluate how they affect the estimation of parameters in macroevolutionary models of lineage diversification. Specifically, we use BEAST to simulate trees under combinations of tree priors and molecular clocks, simulate sequence data, estimate trees, and estimate diversification parameters (e.g., speciation rates and extinction rates) from these trees. When substitution rate heterogeneity is large, parameter estimates deviate substantially from those estimated under the simulation conditions when not captured by an appropriate choice of relaxed molecular clock. However, in general, we find that the choice of tree prior and molecular clock has relatively little impact on the estimation of diversification rates insofar as the sequence data are sufficiently informative and substitution rate heterogeneity among lineages is low-to-moderate.