DV
Daniel Valenzuela
Author with expertise in RNA Sequencing Data Analysis
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
3
(67% Open Access)
Cited by:
61
h-index:
11
/
i10-index:
11
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Computational Pan-Genomics: Status, Promises and Challenges

Tobias Marschall et al.Mar 12, 2016
Abstract Many disciplines, from human genetics and oncology to plant breeding, microbiology and virology, commonly face the challenge of analyzing rapidly increasing numbers of genomes. In case of Homo sapiens , the number of sequenced genomes will approach hundreds of thousands in the next few years. Simply scaling up established bioinformatics pipelines will not be sufficient for leveraging the full potential of such rich genomic datasets. Instead, novel, qualitatively different computational methods and paradigms are needed. We will witness the rapid extension of computational pan-genomics , a new sub-area of research in computational biology. In this paper, we generalize existing definitions and understand a pan-genome as any collection of genomic sequences to be analyzed jointly or to be used as a reference. We examine already available approaches to construct and use pan-genomes, discuss the potential benefits of future technologies and methodologies, and review open challenges from the vantage point of the above-mentioned biological disciplines. As a prominent example for a computational paradigm shift, we particularly highlight the transition from the representation of reference genomes as strings to representations as graphs. We outline how this and other challenges from different application domains translate into common computational problems, point out relevant bioinformatics techniques and identify open problems in computer science. With this review, we aim to increase awareness that a joint approach to computational pan-genomics can help address many of the problems currently faced in various domains.
0
Citation49
0
Save
0

On enhancing variation detection through pan-genome indexing

Daniel Valenzuela et al.Jun 25, 2015
Detection of genomic variants is commonly conducted by aligning a set of reads sequenced from an individual to the reference genome of the species and analyzing the resulting read pileup. Typically, this process finds a subset of variants already reported in databases and additional novel variants characteristic to the sequenced individual. Most of the effort in the literature has been put to the alignment problem on a single reference sequence, although our gathered knowledge on species such as human is pan-genomic: We know most of the common variation in addition to the reference sequence. There have been some efforts to exploit pan-genome indexing, where the most widely adopted approach is to build an index structure on a set of reference sequences containing observed variation combinations. The enhancement in alignment accuracy when using pan-genome indexing has been demonstrated in experiments, but so far the above multiple references pan-genome indexing approach has not been tested on its final goal, that is, in enhancing variation detection. This is the focus of this article: We study a generic approach to add variation detection support on top of the multiple references pan-genomic indexing approach. Namely, we study the read pileup on a multiple alignment of reference genomes, and propose a heaviest path algorithm to extract a new recombined reference sequence. This recombined reference sequence can then be utilized in any standard read alignment and variation detection workflow. We demonstrate that the approach enhances variation detection on realistic data sets.