LS
Lauren Schmitt
Author with expertise in Autism Spectrum Disorders
Achievements
This user has not unlocked any achievements yet.
Key Stats
Upvotes received:
0
Publications:
7
(43% Open Access)
Cited by:
0
h-index:
22
/
i10-index:
36
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Impaired perceptual learning in Fragile X syndrome is mediated by parvalbumin neuron dysfunction in V1 and is reversible.

Anubhuti Goel et al.Nov 13, 2017
Atypical sensory processing is a core characteristic in autism spectrum disorders that negatively impacts virtually all activities of daily living. Sensory symptoms are predictive of the subsequent appearance of impaired social behavior and other autistic traits. Thus, a better understanding of the changes in neural circuitry that disrupt perceptual learning in autism could shed light into the mechanistic basis and potential therapeutic avenues for a range of autistic symptoms. Likewise, the lack of directly comparable behavioral paradigms in both humans and animal models currently limits the translational potential of discoveries in the latter. We adopted a symptom-to-circuit approach to uncover the circuit-level alterations in the Fmr1-/- mouse model of Fragile X syndrome (FXS) that underlie atypical visual discrimination in this disorder. Using a go/no-go task and in vivo 2-photon calcium imaging in primary visual cortex (V1), we find that impaired discrimination in Fmr1-/- mice correlates with marked deficits in orientation tuning of principal neurons, and a decrease in the activity of parvalbumin (PV) interneurons in V1. Restoring visually evoked activity in PV cells in Fmr1-/- mice with a chemogenetic (DREADD) strategy was sufficient to rescue their behavioral performance. Finally, we found that human subjects with FXS exhibit strikingly similar impairments in visual discrimination as Fmr1-/- mice. We conclude that manipulating orientation tuning in autism could improve visually guided behaviors that are critical for playing sports, driving or judging emotions.
0

Safety, Tolerability, and EEG-Based Target Engagement of STP1 (PDE3,4 Inhibitor and NKCC1 Antagonist) in a Randomized Clinical Trial in a Subgroup of Patients with ASD

Craig Erickson et al.Jun 27, 2024
This study aimed to evaluate the safety and tolerability of STP1, a combination of ibudilast and bumetanide, tailored for the treatment of a clinically and biologically defined subgroup of patients with Autism Spectrum Disorder (ASD), namely ASD Phenotype 1 (ASD-Phen1). We conducted a randomized, double-blind, placebo-controlled, parallel-group phase 1b study with two 14-day treatment phases (registered at clinicaltrials.gov as NCT04644003). Nine ASD-Phen1 patients were administered STP1, while three received a placebo. We assessed safety and tolerability, along with electrophysiological markers, such as EEG, Auditory Habituation, and Auditory Chirp Synchronization, to better understand STP1’s mechanism of action. Additionally, we used several clinical scales to measure treatment outcomes. The results showed that STP1 was well-tolerated, with electrophysiological markers indicating a significant and dose-related reduction of gamma power in the whole brain and in brain areas associated with executive function and memory. Treatment with STP1 also increased alpha 2 power in frontal and occipital regions and improved habituation and neural synchronization to auditory chirps. Although numerical improvements were observed in several clinical scales, they did not reach statistical significance. Overall, this study suggests that STP1 is well-tolerated in ASD-Phen1 patients and shows indirect target engagement in ASD brain regions of interest.
0

Frontal Cortex Hyperactivation and Gamma Desynchrony in Fragile X Syndrome: Correlates of Auditory Hypersensitivity

Ernest Pedapati et al.Jun 14, 2024
Fragile X syndrome (FXS) is an X-linked disorder that often leads to intellectual disability, anxiety, and sensory hypersensitivity. While sound sensitivity (hyperacusis) is a distressing symptom in FXS, its neural basis is not well understood. It is postulated that hyperacusis may stem from temporal lobe hyperexcitability or dysregulation in topdown modulation. Studying the neural mechanisms underlying sound sensitivity in FXS using scalp electroencephalography (EEG) is challenging because the temporal and frontal regions have overlapping neural projections that are difficult to differentiate. To overcome this challenge, we conducted EEG source analysis on a group of 36 individuals with FXS and 39 matched healthy controls. Our goal was to characterize the spatial and temporal properties of the response to an auditory chirp stimulus. Our results showed that males with FXS exhibit excessive activation in the frontal cortex in response to the stimulus onset, which may reflect changes in top-down modulation of auditory processing. Additionally, during the chirp stimulus, individuals with FXS demonstrated a reduction in typical gamma phase synchrony, along with an increase in asynchronous gamma power, across multiple regions, most strongly in temporal cortex. Consistent with these findings, we observed a decrease in the signal-to-noise ratio, estimated by the ratio of synchronous to asynchronous gamma activity, in individuals with FXS. Furthermore, this ratio was highly correlated with performance in an auditory attention task. Compared to controls, males with FXS demonstrated elevated bidirectional frontotemporal information flow at chirp onset. The evidence indicates that both temporal lobe hyperexcitability and disruptions in top-down regulation play a role in auditory sensitivity disturbances in FXS. These findings have the potential to guide the development of therapeutic targets and back-translation strategies.