Abstract Our understanding of the genetic architecture of the human cerebral cortex is limited both in terms of the diversity of brain structural phenotypes and the anatomical granularity of their associations with genetic variants. Here, we conducted genome-wide association meta-analysis of 13 structural and diffusion magnetic resonance imaging derived cortical phenotypes, measured globally and at 180 bilaterally averaged regions in 36,843 individuals from the UK Biobank and the ABCD cohorts. These phenotypes include cortical thickness, surface area, grey matter volume, and measures of folding, neurite density, and water diffusion. We identified 4,349 experiment-wide significant loci associated with global and regional phenotypes. Multiple lines of analyses identified four genetic latent structures and causal relationships between surface area and some measures of cortical folding. These latent structures partly relate to different underlying gene expression trajectories during development and are enriched for different cell types. We also identified differential enrichment for neurodevelopmental and constrained genes and demonstrate that common genetic variants associated with surface area and volume specifically are associated with cephalic disorders. Finally, we identified complex inter-phenotype and inter-regional genetic relationships among the 13 phenotypes which reflect developmental differences among them. These analyses help refine the role of common genetic variants in human cortical development and organisation. One sentence summary GWAS of 2,347 neuroimaging phenotypes shed light on the global and regional genetic organisation of the cortex, underlying cellular and developmental processes, and links to neurodevelopmental and cephalic disorders.