JS
Joshua Shorenstein
Author with expertise in Diversity and Function of Gut Microbiome
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
4
(75% Open Access)
Cited by:
714
h-index:
9
/
i10-index:
9
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

American Gut: an Open Platform for Citizen-Science Microbiome Research

Daniel McDonalda et al.Mar 7, 2018
Abstract Although much work has linked the human microbiome to specific phenotypes and lifestyle variables, data from different projects have been challenging to integrate and the extent of microbial and molecular diversity in human stool remains unknown. Using standardized protocols from the Earth Microbiome Project and sample contributions from over 10,000 citizen-scientists, together with an open research network, we compare human microbiome specimens primarily from the USA, UK, and Australia to one another and to environmental samples. Our results show an unexpected range of beta-diversity in human stool microbiomes as compared to environmental samples, demonstrate the utility of procedures for removing the effects of overgrowth during room-temperature shipping for revealing phenotype correlations, uncover new molecules and kinds of molecular communities in the human stool metabolome, and examine emergent associations among the microbiome, metabolome, and the diversity of plants that are consumed (rather than relying on reductive categorical variables such as veganism, which have little or no explanatory power). We also demonstrate the utility of the living data resource and cross-cohort comparison to confirm existing associations between the microbiome and psychiatric illness, and to reveal the extent of microbiome change within one individual during surgery, providing a paradigm for open microbiome research and education. Importance We show that a citizen-science, self-selected cohort shipping samples through the mail at room temperature recaptures many known microbiome results from clinically collected cohorts and reveals new ones. Of particular interest is integrating n=1 study data with the population data, showing that the extent of microbiome change after events such as surgery can exceed differences between distinct environmental biomes, and the effect of diverse plants in the diet which we confirm with untargeted metabolomics on hundreds of samples.
0
Citation54
0
Save
18

A framework for evaluating edited cell libraries created by massively parallel genome engineering

Simon Cawley et al.Sep 23, 2021
Abstract Genome engineering methodologies are transforming biological research and discovery. Approaches based on CRISPR technology have been broadly adopted and there is growing interest in the generation of massively parallel edited cell libraries. Comparing the libraries generated by these varying approaches is challenging and researchers lack a common framework for defining and assessing the characteristics of these libraries. Here we describe a framework for evaluating massively parallel libraries of edited genomes based on established methods for sampling complex populations. We define specific attributes and metrics that are informative for describing a complex cell library and provide examples for estimating these values. We also connect this analysis to generic phenotyping approaches, using either pooled (typically via a selection assay) or isolate (often referred to as screening) phenotyping approaches. We approach this from the context of creating massively parallel, precisely edited libraries with one edit per cell, though the approach holds for other types of modifications, including libraries containing multiple edits per cell (combinatorial editing). This framework is a critical component for evaluating and comparing new technologies as well as understanding how a massively parallel edited cell library will perform in a given phenotyping approach.
18
Citation3
0
Save
0

Metagenomic covariation along densely sampled environmental gradients in the Red Sea

Luke Thompson et al.May 24, 2016
Oceanic microbial diversity covaries with physicochemical parameters. Temperature, for example, explains approximately half of global variation in surface taxonomic abundance. It is unknown, however, whether covariation patterns hold over narrower parameter gradients and spatial scales, and extending to mesopelagic depths. We collected and sequenced 45 epipelagic and mesopelagic microbial metagenomes on a meridional transect through the eastern Red Sea. We asked which environmental parameters explain the most variation in relative abundances of taxonomic groups, gene ortholog groups, and pathways -- at a spatial scale of <2000 km, along narrow but well-defined latitudinal and depth-dependent gradients. We also asked how microbes are adapted to gradients and extremes in irradiance, temperature, salinity, and nutrients, examining the responses of individual gene ortholog groups to these parameters. Functional and taxonomic metrics were equally well explained (75-79%) by environmental parameters. However, only functional and not taxonomic covariation patterns were conserved when comparing with an intruding water mass with different physicochemical properties. Temperature explained the most variation in each metric, followed by nitrate, chlorophyll, phosphate, and salinity. That nitrate explained more variation than phosphate suggested nitrogen limitation, consistent with low surface N:P ratios. Covariation of gene ortholog groups with environmental parameters revealed patterns of functional adaptation to the challenging Red Sea environment: high irradiance, temperature, salinity, and low nutrients. Nutrient acquisition gene ortholog groups were anticorrelated with concentrations of their respective nutrient species, recapturing trends previously observed across much larger distances and environmental gradients. This dataset of metagenomic covariation along densely sampled environmental gradients includes online data exploration supplements, serving as a community resource for marine microbial ecology.