VJ
Vykintas Jauniškis
Author with expertise in Ribosome Structure and Translation Mechanisms
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
3
(67% Open Access)
Cited by:
258
h-index:
5
/
i10-index:
5
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
80

Supervised generative design of regulatory DNA for gene expression control

Jan Zrimec et al.Jul 15, 2021
Abstract In order to control gene expression, regulatory DNA variants are commonly designed using random synthetic approaches with mutagenesis and screening. This however limits the size of the designed DNA to span merely a part of a single regulatory region, whereas the whole gene regulatory structure including the coding and adjacent non-coding regions is involved in controlling gene expression. Here, we prototype a deep neural network strategy that models whole gene regulatory structures and generates de novo functional regulatory DNA with prespecified expression levels. By learning directly from natural genomic data, without the need for large synthetic DNA libraries, our ExpressionGAN can traverse the whole sequence-expression landscape to produce sequence variants with target mRNA levels as well as natural-like properties, including over 30% dissimilarity to any natural sequence. We experimentally demonstrate that this generative strategy is more efficient than a mutational one when using purely natural genomic data, as 57% of the newly-generated highly-expressed sequences surpass the expression levels of natural controls. We foresee this as a lucrative strategy to expand our knowledge of gene expression regulation as well as increase expression control in any desired organism for synthetic biology and metabolic engineering applications.
80
Citation3
0
Save
0

Expanding functional protein sequence space using generative adversarial networks

Donatas Repecka et al.Oct 2, 2019
De novo protein design for catalysis of any desired chemical reaction is a long standing goal in protein engineering, due to the broad spectrum of technological, scientific and medical applications. Currently, mapping protein sequence to protein function is, however, neither computationionally nor experimentally tangible [1][1],[2][2]. Here we developed ProteinGAN, a specialised variant of the generative adversarial network [3][3] that is able to ‘learn’ natural protein sequence diversity and enables the generation of functional protein sequences. ProteinGAN learns the evolutionary relationships of protein sequences directly from the complex multidimensional amino acid sequence space and creates new, highly diverse sequence variants with natural-like physical properties. Using malate dehydrogenase as a template enzyme, we show that 24% of the ProteinGAN-generated and experimentally tested sequences are soluble and display wild-type level catalytic activity in the tested conditions in vitro , even in highly mutated (>100 mutations) sequences. ProteinGAN therefore demonstrates the potential of artificial intelligence to rapidly generate highly diverse novel functional proteins within the allowed biological constraints of the sequence space. [1]: #ref-1 [2]: #ref-2 [3]: #ref-3