Abstract Background Archipelagos and oceanic islands often present high percentage of endemism due to rapid speciation. The Malayan pangolin is a species distributing at both mainland (southern Yunnan, China) and oceanic islands via Malayan peninsula, which may result in deep differentiation among populations. In-depth investigation of population structure and genetic consequences for such species is of vital importance for their protection and conservation, practically for the critically endangered Malayan pangolin that is suffering from poaching, illegal trade, and habitat loss. Results Here we carried out a large-scale population genomic analysis for Malayan pangolins, and revealed three highly distinct genetic populations in this species, two of which are now being reported for the first time. Based on multiple lines of genomic and morphological evidence, we postulate the existence of a new pangolin species ( Manis _1). Genetic diversity and recent inbreeding were both at a moderate level for both Malayan pangolins and Manis _1, but mainland Malayan pangolins presented relatively lower genetic diversity, higher inbreeding and fitness cost than island populations. Conclusions We found extremely deep and graded differentiation in Malayan pangolins, with two newly discovered genetic populations and a new pangolin species that is closely related to the Philippine pangolin than the typical Malayan pangolin, but a distant relative of the Indian pangolin. Anthropogenic factors did not significantly weaken the basis of genetic sustainability for Malayan pangolins, but mainland Malayan pangolins should be paid more attention for conservation due to higher genetic risks than island populations.