MP
Malwina Prater
Author with expertise in Neonatal Lung Development and Respiratory Morbidity
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
4
(75% Open Access)
Cited by:
975
h-index:
5
/
i10-index:
5
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Trophoblast organoids as a model for maternal–fetal interactions during human placentation

Margherita Turco et al.Nov 27, 2018
The placenta is the extraembryonic organ that supports the fetus during intrauterine life. Although placental dysfunction results in major disorders of pregnancy with immediate and lifelong consequences for the mother and child, our knowledge of the human placenta is limited owing to a lack of functional experimental models1. After implantation, the trophectoderm of the blastocyst rapidly proliferates and generates the trophoblast, the unique cell type of the placenta. In vivo, proliferative villous cytotrophoblast cells differentiate into two main sub-populations: syncytiotrophoblast, the multinucleated epithelium of the villi responsible for nutrient exchange and hormone production, and extravillous trophoblast cells, which anchor the placenta to the maternal decidua and transform the maternal spiral arteries2. Here we describe the generation of long-term, genetically stable organoid cultures of trophoblast that can differentiate into both syncytiotrophoblast and extravillous trophoblast. We used human leukocyte antigen (HLA) typing to confirm that the organoids were derived from the fetus, and verified their identities against four trophoblast-specific criteria3. The cultures organize into villous-like structures, and we detected the secretion of placental-specific peptides and hormones, including human chorionic gonadotropin (hCG), growth differentiation factor 15 (GDF15) and pregnancy-specific glycoprotein (PSG) by mass spectrometry. The organoids also differentiate into HLA-G+ extravillous trophoblast cells, which vigorously invade in three-dimensional cultures. Analysis of the methylome reveals that the organoids closely resemble normal first trimester placentas. This organoid model will be transformative for studying human placental development and for investigating trophoblast interactions with the local and systemic maternal environment. An in vitro system that generates three-dimensional cultures of extraembryonic fetal trophoblast cells that differentiate into the two main types of trophoblast can be used to study human placental development.
0
Citation490
0
Save
0

Mechanical matching of implant to host minimises foreign body reaction

Alejandro Carnicer‐Lombarte et al.Nov 4, 2019
Medical implants offer a unique and powerful therapeutic approach in many areas of medicine. However, their lifetime is often limited as they may cause a foreign body reaction (FBR) leading to their encapsulation by scar tissue. Despite the importance of this process, how cells recognise implanted materials is still poorly understood5,6. Here, we show how the mechanical mismatch between implants and host tissue leads to FBR. Fibroblasts and macrophages, which are both crucially involved in mediating FBR, became activated when cultured on materials just above the stiffness found in healthy tissue. Coating implants with a thin layer of hydrogel or silicone with a tissue-like elastic modulus of ~1 kPa or below led to significantly reduced levels of inflammation and fibrosis after chronic implantation both in peripheral nerves and subcutaneously. This effect was linked to the nuclear localisation of the mechanosensitive transcriptional regulator YAP in vivo. Hence, we identify the mechanical mismatch between implant and tissue as a driver of FBR. Soft implant coatings matching the mechanical properties of host tissue minimized FBR and may be used as a novel therapeutic strategy to improve long-term biomedical implant stability without extensive modification of current implant manufacturing techniques, thus facilitating clinical translation.
0

Single-cell RNA sequencing identifies CXADR as a fate determinant of the placental exchange surface

Dafina Angelova et al.Jan 2, 2025
Abstract The placenta is the critical interface between mother and fetus, and consequently, placental dysfunction underlies many pregnancy complications. Placental formation requires an adequate expansion of trophoblast stem and progenitor cells followed by finely tuned lineage specification events. Here, using single-cell RNA sequencing of mouse trophoblast stem cells during the earliest phases of differentiation, we identify gatekeepers of the stem cell state, notably Nicol1 , and uncover unsuspected trajectories of cell lineage diversification as well as regulators of lineage entry points. We show that junctional zone precursors and precursors of one of the two syncytial layers of the mouse placental labyrinth, the Syncytiotrophoblast-I lineage, initially share similar trajectories. Importantly, our functional analysis of one such lineage precursor marker, CXADR, demonstrates that this cell surface protein regulates the differentiation dynamics between the two syncytial layers of the mouse labyrinth, ensuring the correct establishment of the placental exchange surface. Deciphering the mechanisms underlying trophoblast lineage specification will inform our understanding of human pregnancy in health and disease.