LL
L. Lambourne
Author with expertise in Analysis of Gene Interaction Networks
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
7
(71% Open Access)
Cited by:
1,057
h-index:
119
/
i10-index:
536
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
2

A reference map of the human binary protein interactome

Katja Luck et al.Apr 8, 2020
Global insights into cellular organization and genome function require comprehensive understanding of the interactome networks that mediate genotype–phenotype relationships1,2. Here we present a human ‘all-by-all’ reference interactome map of human binary protein interactions, or ‘HuRI’. With approximately 53,000 protein–protein interactions, HuRI has approximately four times as many such interactions as there are high-quality curated interactions from small-scale studies. The integration of HuRI with genome3, transcriptome4 and proteome5 data enables cellular function to be studied within most physiological or pathological cellular contexts. We demonstrate the utility of HuRI in identifying the specific subcellular roles of protein–protein interactions. Inferred tissue-specific networks reveal general principles for the formation of cellular context-specific functions and elucidate potential molecular mechanisms that might underlie tissue-specific phenotypes of Mendelian diseases. HuRI is a systematic proteome-wide reference that links genomic variation to phenotypic outcomes. A human binary protein interactome map that includes around 53,000 protein–protein interactions involving more than 8,000 proteins provides a reference for the study of human cellular function in health and disease.
2
Citation892
0
Save
0

Measurement of total and differential W + W − production cross sections in proton-proton collisions at s = 8 $$ \sqrt{s}=8 $$ TeV with the ATLAS detector and limits on anomalous triple-gauge-boson couplings

Georges Aad et al.Sep 1, 2016
The production of W boson pairs in proton-proton collisions at $$ \sqrt{s}=8 $$ TeV is studied using data corresponding to 20.3 fb−1 of integrated luminosity collected by the ATLAS detector during 2012 at the CERN Large Hadron Collider. The W bosons are reconstructed using their leptonic decays into electrons or muons and neutrinos. Events with reconstructed jets are not included in the candidate event sample. A total of 6636 WW candidate events are observed. Measurements are performed in fiducial regions closely approximating the detector acceptance. The integrated measurement is corrected for all acceptance effects and for the W branching fractions to leptons in order to obtain the total WW production cross section, which is found to be 71.1 ± 1.1(stat) − 5.0 + 5.7 (syst) ± 1.4(lumi) pb. This agrees with the next-to-next-to-leading-order Standard Model prediction of 63. 2 − 1.4 + 1.6 (scale) ± 1.2(PDF) pb. Fiducial differential cross sections are measured as a function of each of six kinematic variables. The distribution of the transverse momentum of the leading lepton is used to set limits on anomalous triple-gauge-boson couplings.
0
Paper
Citation57
0
Save
33

Binary interactome models of inner- versus outer-complexome organisation

L. Lambourne et al.Mar 17, 2021
Summary Hundreds of different protein complexes that perform important functions across all cellular processes, collectively comprising the “complexome” of an organism, have been identified 1 . However, less is known about the fraction of the interactome that exists outside the complexome, in the “outer-complexome”. To investigate features of “inner”- versus outer-complexome organisation in yeast, we generated a high-quality atlas of binary protein-protein interactions (PPIs), combining three previous maps 2–4 and a new reference all-by-all binary interactome map. A greater proportion of interactions in our map are in the outer-complexome, in comparison to those found by affinity purification followed by mass spectrometry 5–7 or in literature curated datasets 8–11 . In addition, recent advances in deep learning predictions of PPI structures 12 mirror the existing experimentally resolved structures in being largely focused on the inner complexome and missing most interactions in the outer-complexome. Our new PPI network suggests that the outer-complexome contains considerably more PPIs than the inner-complexome, and integration with functional similarity networks 13–15 reveals that interactions in the inner-complexome are highly detectable and correspond to pairs of proteins with high functional similarity, while proteins connected by more transient, harder-to-detect interactions in the outer-complexome, exhibit higher functional heterogeneity.
33
Citation5
0
Save
0

A reference map of the human protein interactome

Katja Luck et al.Apr 10, 2019
Global insights into cellular organization and function require comprehensive understanding of interactome networks. Similar to how a reference genome sequence revolutionized human genetics, a reference map of the human interactome network is critical to fully understand genotype-phenotype relationships. Here we present the first human “all-by-all” binary reference interactome map, or “HuRI”. With ~53,000 high-quality protein-protein interactions (PPIs), HuRI is approximately four times larger than the information curated from small-scale studies available in the literature. Integrating HuRI with genome, transcriptome and proteome data enables the study of cellular function within essentially any physiological or pathological cellular context. We demonstrate the use of HuRI in identifying specific subcellular roles of PPIs and protein function modulation via splicing during brain development. Inferred tissue-specific networks reveal general principles for the formation of cellular context-specific functions and elucidate potential molecular mechanisms underlying tissue-specific phenotypes of Mendelian diseases. HuRI thus represents an unprecedented, systematic reference linking genomic variation to phenotypic outcomes.