UK
Ulaş Karaöz
Author with expertise in Marine Microbial Diversity and Biogeography
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
17
(65% Open Access)
Cited by:
4,689
h-index:
30
/
i10-index:
48
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly

Kateryna Zhalnina et al.Mar 15, 2018
+10
Z
K
K
Like all higher organisms, plants have evolved in the context of a microbial world, shaping both their evolution and their contemporary ecology. Interactions between plant roots and soil microorganisms are critical for plant fitness in natural environments. Given this co-evolution and the pivotal importance of plant-microbial interactions, it has been hypothesized, and a growing body of literature suggests, that plants may regulate the composition of their rhizosphere to promote the growth of microorganisms that improve plant fitness in a given ecosystem. Here, using a combination of comparative genomics and exometabolomics, we show that pre-programmed developmental processes in plants (Avena barbata) result in consistent patterns in the chemical composition of root exudates. This chemical succession in the rhizosphere interacts with microbial metabolite substrate preferences that are predictable from genome sequences. Specifically, we observed a preference by rhizosphere bacteria for consumption of aromatic organic acids exuded by plants (nicotinic, shikimic, salicylic, cinnamic and indole-3-acetic). The combination of these plant exudation traits and microbial substrate uptake traits interact to yield the patterns of microbial community assembly observed in the rhizosphere of an annual grass. This discovery provides a mechanistic underpinning for the process of rhizosphere microbial community assembly and provides an attractive direction for the manipulation of the rhizosphere microbiome for beneficial outcomes.
0
Citation1,444
0
Save
0

Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system

Karthik Anantharaman et al.Oct 24, 2016
+11
L
C
K
Abstract The subterranean world hosts up to one-fifth of all biomass, including microbial communities that drive transformations central to Earth’s biogeochemical cycles. However, little is known about how complex microbial communities in such environments are structured, and how inter-organism interactions shape ecosystem function. Here we apply terabase-scale cultivation-independent metagenomics to aquifer sediments and groundwater, and reconstruct 2,540 draft-quality, near-complete and complete strain-resolved genomes that represent the majority of known bacterial phyla as well as 47 newly discovered phylum-level lineages. Metabolic analyses spanning this vast phylogenetic diversity and representing up to 36% of organisms detected in the system are used to document the distribution of pathways in coexisting organisms. Consistent with prior findings indicating metabolic handoffs in simple consortia, we find that few organisms within the community can conduct multiple sequential redox transformations. As environmental conditions change, different assemblages of organisms are selected for, altering linkages among the major biogeochemical cycles.
0
Citation1,046
0
Save
0

Differential Growth Responses of Soil Bacterial Taxa to Carbon Substrates of Varying Chemical Recalcitrance

Katherine Goldfarb et al.Jan 1, 2011
+5
C
U
K
ORIGINAL RESEARCH article Front. Microbiol., 02 May 2011Sec. Terrestrial Microbiology volume 2 - 2011 | https://doi.org/10.3389/fmicb.2011.00094
0
Citation580
0
Save
0

Airway Microbiota and Pathogen Abundance in Age-Stratified Cystic Fibrosis Patients

Michael Cox et al.Jun 23, 2010
+14
B
M
M
Bacterial communities in the airways of cystic fibrosis (CF) patients are, as in other ecological niches, influenced by autogenic and allogenic factors. However, our understanding of microbial colonization in younger versus older CF airways and the association with pulmonary function is rudimentary at best. Using a phylogenetic microarray, we examine the airway microbiota in age stratified CF patients ranging from neonates (9 months) to adults (72 years). From a cohort of clinically stable patients, we demonstrate that older CF patients who exhibit poorer pulmonary function possess more uneven, phylogenetically-clustered airway communities, compared to younger patients. Using longitudinal samples collected form a subset of these patients a pattern of initial bacterial community diversification was observed in younger patients compared with a progressive loss of diversity over time in older patients. We describe in detail the distinct bacterial community profiles associated with young and old CF patients with a particular focus on the differences between respective "early" and "late" colonizing organisms. Finally we assess the influence of Cystic Fibrosis Transmembrane Regulator (CFTR) mutation on bacterial abundance and identify genotype-specific communities involving members of the Pseudomonadaceae, Xanthomonadaceae, Moraxellaceae and Enterobacteriaceae amongst others. Data presented here provides insights into the CF airway microbiota, including initial diversification events in younger patients and establishment of specialized communities of pathogens associated with poor pulmonary function in older patient populations.
0
Citation429
0
Save
0

The landscape of histone modifications across 1% of the human genome in five human cell lines

Christof Koch et al.Jun 1, 2007
+19
P
R
C
We generated high-resolution maps of histone H3 lysine 9/14 acetylation (H3ac), histone H4 lysine 5/8/12/16 acetylation (H4ac), and histone H3 at lysine 4 mono-, di-, and trimethylation (H3K4me1, H3K4me2, H3K4me3, respectively) across the ENCODE regions. Studying each modification in five human cell lines including the ENCODE Consortium common cell lines GM06990 (lymphoblastoid) and HeLa-S3, as well as K562, HFL-1, and MOLT4, we identified clear patterns of histone modification profiles with respect to genomic features. H3K4me3, H3K4me2, and H3ac modifications are tightly associated with the transcriptional start sites (TSSs) of genes, while H3K4me1 and H4ac have more widespread distributions. TSSs reveal characteristic patterns of both types of modification present and the position relative to TSSs. These patterns differ between active and inactive genes and in particular the state of H3K4me3 and H3ac modifications is highly predictive of gene activity. Away from TSSs, modification sites are enriched in H3K4me1 and relatively depleted in H3K4me3 and H3ac. Comparison between cell lines identified differences in the histone modification profiles associated with transcriptional differences between the cell lines. These results provide an overview of the functional relationship among histone modifications and gene expression in human cells.
0
Citation411
0
Save
0

Gut microbiota mediate caffeine detoxification in the primary insect pest of coffee

Javier Ceja-Navarro et al.Jul 14, 2015
+7
U
F
J
Abstract The coffee berry borer ( Hypothenemus hampei ) is the most devastating insect pest of coffee worldwide with its infestations decreasing crop yield by up to 80%. Caffeine is an alkaloid that can be toxic to insects and is hypothesized to act as a defence mechanism to inhibit herbivory. Here we show that caffeine is degraded in the gut of H. hampei , and that experimental inactivation of the gut microbiota eliminates this activity. We demonstrate that gut microbiota in H. hampei specimens from seven major coffee-producing countries and laboratory-reared colonies share a core of microorganisms. Globally ubiquitous members of the gut microbiota, including prominent Pseudomonas species, subsist on caffeine as a sole source of carbon and nitrogen. Pseudomonas caffeine demethylase genes are expressed in vivo in the gut of H. hampei , and re-inoculation of antibiotic-treated insects with an isolated Pseudomonas strain reinstates caffeine-degradation ability confirming their key role.
0
Citation397
0
Save
0

Use of 16S rRNA Gene for Identification of a Broad Range of Clinically Relevant Bacterial Pathogens

Ramya Srinivasan et al.Feb 6, 2015
+6
M
U
R
According to World Health Organization statistics of 2011, infectious diseases remain in the top five causes of mortality worldwide. However, despite sophisticated research tools for microbial detection, rapid and accurate molecular diagnostics for identification of infection in humans have not been extensively adopted. Time-consuming culture-based methods remain to the forefront of clinical microbial detection. The 16S rRNA gene, a molecular marker for identification of bacterial species, is ubiquitous to members of this domain and, thanks to ever-expanding databases of sequence information, a useful tool for bacterial identification. In this study, we assembled an extensive repository of clinical isolates (n = 617), representing 30 medically important pathogenic species and originally identified using traditional culture-based or non-16S molecular methods. This strain repository was used to systematically evaluate the ability of 16S rRNA for species level identification. To enable the most accurate species level classification based on the paucity of sequence data accumulated in public databases, we built a Naïve Bayes classifier representing a diverse set of high-quality sequences from medically important bacterial organisms. We show that for species identification, a model-based approach is superior to an alignment based method. Overall, between 16S gene based and clinical identities, our study shows a genus-level concordance rate of 96% and a species-level concordance rate of 87.5%. We point to multiple cases of probable clinical misidentification with traditional culture based identification across a wide range of gram-negative rods and gram-positive cocci as well as common gram-negative cocci.
0
Citation374
0
Save
10

Life history strategies and niches of soil bacteria emerge from interacting thermodynamic, biophysical, and metabolic traits

Gianna Marschmann et al.Jul 2, 2022
+5
K
J
G
Abstract Efficient biochemical transformation of belowground carbon by microorganisms plays a critical role in determining the long-term fate of soil carbon. As plants assimilate carbon from the atmosphere, up to 50% is exuded into the area surrounding growing roots, where it may be transformed into microbial biomass and subsequently stabilized through mineral associations. However, due to a hierarchy of interacting microbial traits, it remains elusive how emergent life-history strategies of microorganisms influence the processing of root exudate carbon. Here, by combining theory-based predictions of substrate uptake kinetics for soil bacteria and a new genome-informed trait-based dynamic energy budget model, we predicted life history traits and trade-offs of a broad range of soil bacteria growing on 82 root exudate metabolites. The model captured resource-dependent trade-offs between growth rate (power) and growth efficiency (yield) that are fundamental to microbial fitness in communities. During early phases of plant development, growth rates of bacteria were largely constrained by maximum growth potential, highlighting the predictive power of genomic traits during nutrient-replete soil conditions. In contrast, selection for efficiency was important later in the plant growing season, where the model successfully predicted microbial substrate preferences for aromatic organic acids and plant hormones. The predicted carbon-use efficiencies for growth on organics acids were much higher than typical values observed in soil. These predictions provide mechanistic underpinning for the apparent efficiency of the microbial route to mineral stabilization in the rhizosphere and add an additional layer of complexity to rhizosphere microbial community assembly.
10
Citation5
0
Save
35

Virus diversity and activity is driven by snowmelt and host dynamics in a high-altitude watershed soil ecosystem

Clément Coclet et al.Mar 6, 2023
+4
U
P
C
ABSTRACT Viruses, including phages, impact nearly all organisms on Earth, including microbial communities and their associated biogeochemical processes. In soils, highly diverse viral communities have been identified, with a global distribution seemingly driven by multiple biotic and abiotic factors, especially soil temperature and moisture. However, our current understanding of the stability of soil viral communities across time, and their response to strong seasonal change in environmental parameters remains limited. Here, we investigated the diversity and activity of environmental DNA and RNA viruses, including phages, across dynamics seasonal changes in a snow-dominated mountainous watershed by examining paired metagenomes and metatranscriptomes. We identified a large number of DNA and RNA viruses taxonomically divergent from existing environmental viruses, including a significant proportion of RNA viruses target fungal hosts and a large and unsuspected diversity of positive single-stranded RNA phages ( Leviviricetes ), highlighting the under-characterization of the global soil virosphere. Among these, we were able to distinguish subsets of active phages which changed across seasons, consistent with a “seed-bank” viral community structure in which new phage activity, for example replication and host lysis, is sequentially triggered by changes in environmental conditions. Zooming in at the population level, we further identified virus-host dynamics matching two existing ecological models: “Kill-The-Winner” which proposes that lytic phages are actively infecting abundant bacteria, and “Piggyback-The-Persistent” which argues that when the host is growing slowly it is more beneficial to remain in a lysogenic state. The former was associated with summer months of high and rapid microbial activity, and the latter to winter months of limited and slow host growth. Taken together, these results suggest that the high diversity of viruses in soils is likely associated with a broad range of host interaction types each adapted to specific host ecological strategies and environmental conditions. Moving forward, while as our understanding of how environmental and host factors drive viral activity in soil ecosystems progresses, integrating these viral impacts in complex natural microbiome models will be key to accurately predict ecosystem biogeochemistry.
35
Citation2
0
Save
10

Influence of root cortical aerenchyma on the rhizosphere microbiome of field-grown maize

Tania Galindo‐Castañeda et al.Feb 2, 2023
+3
U
C
T
ABSTRACT The root anatomical phenotype root cortical aerenchyma (RCA) decreases the metabolic cost of soil exploration and improves plant growth under drought and low soil fertility. RCA may also change the microenvironment of rhizosphere microorganisms by increasing oxygen availability or by reducing carbon rhizodeposition. We tested the hypothesis that plants with contrasting expression of RCA have different rhizosphere prokaryotic communities. Maize inbreds were grown in two field sites, Limpopo Province, South Africa and Pennsylvania, USA, and their rhizosphere soil sampled at flowering. High- and low-nitrogen fertilization was imposed as separate treatments in the experiment in South Africa. The rhizosphere microbial composition of plants with contrasting RCA was characterized by metabarcoding of the 16S rRNA genes. Geographic location was the most important factor related to the composition of rhizosphere microbial communities. In the site in South Africa, RCA explained greater percent of variance (9%) in the composition of microbial communities than genotype (7%). Although other root anatomical and architectural phenotypes were studied as possible cofactors affecting the microbial composition, RCA was among the best significant explanatory variables for the South African site although it was neutral in the Pennsylvania site. High-RCA rhizospheres significantly enriched OTUs of the families Burkholderiaceae (in South Africa) and Bacillaceae (in USA), compared to low-RCA plants, and OTUs of the families Beijerinckiaceae and Sphingomonadaceae were enriched at the two nitrogen levels in high RCA plants in South Africa. Our results are consistent with the hypothesis that RCA is an important factor for rhizosphere microbial communities, especially under suboptimal nitrogen conditions.
10
Citation1
0
Save
Load More