MH
Melanie Huntley
Author with expertise in Role of Microglia in Neurological Disorders
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
6
(67% Open Access)
Cited by:
2,132
h-index:
17
/
i10-index:
18
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Recurrent R-spondin fusions in colon cancer

Somasekar Seshagiri et al.Aug 1, 2012
+24
S
E
S
Exomes, transcriptomes and copy-number alterations in a sample of more than 70 primary human colonic tumours were analysed in an attempt to characterize the genomic landscape; in addition to finding alterations in genes associated with commonly mutated signalling pathways, recurrent gene fusions involving R-spondin family members were also found to occur in approximately 10% of colonic tumours, revealing a potential new therapeutic target. An analysis of exomes, transcriptomes and copy-number alterations in more than 70 primary human colon tumours and matched normal controls has identified more than 35,000 protein-altering somatic mutations, most of which have been validated. In addition to alterations in genes involved in the Wnt pathway, chromatin remodelling and receptor-tyrosine-kinase signalling, the authors identify recurrent gene fusions involving R-spondin family members that collectively occur in 10% of colon tumors; as such they may provide a potential therapeutic target. There is evidence to suggest that these fusions may have a role in the activation of Wnt signalling and tumorigenesis. Identifying and understanding changes in cancer genomes is essential for the development of targeted therapeutics1. Here we analyse systematically more than 70 pairs of primary human colon tumours by applying next-generation sequencing to characterize their exomes, transcriptomes and copy-number alterations. We have identified 36,303 protein-altering somatic changes that include several new recurrent mutations in the Wnt pathway gene TCF7L2, chromatin-remodelling genes such as TET2 and TET3 and receptor tyrosine kinases including ERBB3. Our analysis for significantly mutated cancer genes identified 23 candidates, including the cell cycle checkpoint kinase ATM. Copy-number and RNA-seq data analysis identified amplifications and corresponding overexpression of IGF2 in a subset of colon tumours. Furthermore, using RNA-seq data we identified multiple fusion transcripts including recurrent gene fusions involving R-spondin family members RSPO2 and RSPO3 that together occur in 10% of colon tumours. The RSPO fusions were mutually exclusive with APC mutations, indicating that they probably have a role in the activation of Wnt signalling and tumorigenesis. Consistent with this we show that the RSPO fusion proteins were capable of potentiating Wnt signalling. The R-spondin gene fusions and several other gene mutations identified in this study provide new potential opportunities for therapeutic intervention in colon cancer.
0
Citation911
0
Save
0

Diverse Brain Myeloid Expression Profiles Reveal Distinct Microglial Activation States and Aspects of Alzheimer’s Disease Not Evident in Mouse Models

Brad Friedman et al.Jan 1, 2018
+12
G
K
B

Summary

 Microglia, the CNS-resident immune cells, play important roles in disease, but the spectrum of their possible activation states is not well understood. We derived co-regulated gene modules from transcriptional profiles of CNS myeloid cells of diverse mouse models, including new tauopathy model datasets. Using these modules to interpret single-cell data from an Alzheimer's disease (AD) model, we identified microglial subsets—distinct from previously reported "disease-associated microglia"—expressing interferon-related or proliferation modules. We then analyzed whole-tissue RNA profiles from human neurodegenerative diseases, including a new AD dataset. Correcting for altered cellular composition of AD tissue, we observed elevated expression of the neurodegeneration-related modules, but also modules not implicated using expression profiles from mouse models alone. We provide a searchable, interactive database for exploring gene expression in all these datasets (http://research-pub.gene.com/BrainMyeloidLandscape). Understanding the dimensions of CNS myeloid cell activation in human disease may reveal opportunities for therapeutic intervention.
0
Citation519
0
Save
0

Changes in the Synaptic Proteome in Tauopathy and Rescue of Tau-Induced Synapse Loss by C1q Antibodies

Borislav Dejanovic et al.Nov 1, 2018
+14
J
C
B
Synapse loss and Tau pathology are hallmarks of Alzheimer's disease (AD) and other tauopathies, but how Tau pathology causes synapse loss is unclear. We used unbiased proteomic analysis of postsynaptic densities (PSDs) in Tau-P301S transgenic mice to identify Tau-dependent alterations in synapses prior to overt neurodegeneration. Multiple proteins and pathways were altered in Tau-P301S PSDs, including depletion of a set of GTPase-regulatory proteins that leads to actin cytoskeletal defects and loss of dendritic spines. Furthermore, we found striking accumulation of complement C1q in the PSDs of Tau-P301S mice and AD patients. At synapses, C1q decorated perisynaptic membranes, accumulated in correlation with phospho-Tau, and was associated with augmented microglial engulfment of synapses and decline of synapse density. A C1q-blocking antibody inhibited microglial synapse removal in cultured neurons and in Tau-P301S mice, rescuing synapse density. Thus, inhibiting complement-mediated synapse removal by microglia could be a potential therapeutic target for Tau-associated neurodegeneration.
0

Complement C3 Is Activated in Human AD Brain and Is Required for Neurodegeneration in Mouse Models of Amyloidosis and Tauopathy

Tiffany Wu et al.Aug 1, 2019
+19
V
B
T
Complement pathway overactivation can lead to neuronal damage in various neurological diseases. Although Alzheimer's disease (AD) is characterized by β-amyloid plaques and tau tangles, previous work examining complement has largely focused on amyloidosis models. We find that glial cells show increased expression of classical complement components and the central component C3 in mouse models of amyloidosis (PS2APP) and more extensively tauopathy (TauP301S). Blocking complement function by deleting C3 rescues plaque-associated synapse loss in PS2APP mice and ameliorates neuron loss and brain atrophy in TauP301S mice, improving neurophysiological and behavioral measurements. In addition, C3 protein is elevated in AD patient brains, including at synapses, and levels and processing of C3 are increased in AD patient CSF and correlate with tau. These results demonstrate that complement activation contributes to neurodegeneration caused by tau pathology and suggest that blocking C3 function might be protective in AD and other tauopathies.
0
Citation334
0
Save
0

Genomic variant calling: Flexible tools and a diagnostic data set

Michael Lawrence et al.Sep 18, 2015
+11
A
E
M
The accurate identification of low-frequency variants in tumors remains an unsolved problem. To support characterization of the issues in a realistic setting, we have developed software tools and a reference dataset for diagnosing variant calling pipelines. The dataset contains millions of variants at frequencies ranging from 0.05 to 1.0. To generate the dataset, we performed whole-genome sequencing of a mixture of two Corriel cell lines, NA19240 and NA12878, the mothers of YRI (Y) and CEU (C) HapMap trios, respectively. The cells were mixed in three different proportions, 10Y/90C, 50Y/50C and 90Y/10C, in an effort to simulate the heterogeneity found in tumor samples. We sequenced three biological replicates for each mixture, yielding approximately 1.4 billion reads per mixture for an average of 64X coverage. Using the published genotypes as our reference, we evaluate the performance of a general variant calling algorithm, constructed as a demonstration of our flexible toolset, and make comparisons to a standard GATK pipeline. We estimate the overall FDR to be 0.028 and the FNR (when coverage exceeds 20X) to be 0.019 in the 50Y/50C mixture. Interestingly, even with these relatively well studied individuals, we predict over 475,000 new variants, validating in well-behaved coding regions at a rate of 0.97, that were not included in the published genotypes.
0

Alzheimer's patient brain myeloid cells exhibit enhanced aging and unique transcriptional activation

Karpagam Srinivasan et al.Apr 19, 2019
+8
A
B
K
Gene expression changes in brain microglia from mouse models of Alzheimer's disease (AD) are highly characterized and reflect specific myeloid cell activation states that could modulate AD risk or progression. While some groups have produced valuable expression profiles for human brain cells, the cellular clarity with which we now view transcriptional responses in mouse AD models has not yet been realized for human AD tissues due to limited availability of fresh tissue samples and technological hurdles of recovering transcriptomic data with cell-type resolution from frozen samples. We developed a novel method for isolating multiple cell types from frozen post-mortem specimens of superior frontal gyrus for RNA-Seq and identified 66 genes differentially expressed between AD and control subjects in the myeloid cell compartment. Myeloid cells sorted from fusiform gyrus of the same subjects showed similar changes, and whole tissue RNA analyses further corroborated our findings. The changes we observed did not resemble the "damage-associated microglia" (DAM) profile described in mouse AD models, or other known activation states from other disease models. Instead, roughly half of the changes were consistent with an "enhanced human aging" phenotype, whereas the other half, including the AD risk gene APOE, were altered in AD myeloid cells but not differentially expressed with age. We refer to this novel profile in [h]uman [A]lzheimer's [m]icroglia/myeloid cells as the HAM signature. These results, which can be browsed at research-pub.gene.com/BrainMyeloidLandscape/reviewVersion, highlight considerable differences between myeloid activation in mouse models and human disease, and provide a genome-wide picture of brain myeloid activation in human AD.