JG
Jordi Garćıa-Ojalvo
Author with expertise in Neuronal Oscillations in Cortical Networks
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
43
(70% Open Access)
Cited by:
6,772
h-index:
53
/
i10-index:
165
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Chaos-based communications at high bit rates using commercial fibre-optic links

Apostolos Argyris et al.Nov 1, 2005
+7
L
D
A
0

An excitable gene regulatory circuit induces transient cellular differentiation

Gürol Süel et al.Mar 1, 2006
M
L
J
G
Time-lapse imaging is used to follow the activity of several promoters that regulate competence genes in Bacillus subtilis, and the data used to develop a mathematical model of the gene circuitry — revealing that excitable dynamics underlies the positive and negative feedback loops that regulate entry into, and exit from, competence in an individual cell. Certain types of cellular differentiation are probabilistic and transient1,2,3. In such systems individual cells can switch to an alternative state and, after some time, switch back again. In Bacillus subtilis, competence is an example of such a transiently differentiated state associated with the capability for DNA uptake from the environment. Individual genes and proteins underlying differentiation into the competent state have been identified4,5, but it has been unclear how these genes interact dynamically in individual cells to control both spontaneous entry into competence and return to vegetative growth. Here we show that this behaviour can be understood in terms of excitability in the underlying genetic circuit. Using quantitative fluorescence time-lapse microscopy, we directly observed the activities of multiple circuit components simultaneously in individual cells, and analysed the resulting data in terms of a mathematical model. We find that an excitable core module containing positive and negative feedback loops can explain both entry into, and exit from, the competent state. We further tested this model by analysing initiation in sister cells, and by re-engineering the gene circuit to specifically block exit. Excitable dynamics driven by noise naturally generate stochastic and transient responses6, thereby providing an ideal mechanism for competence regulation.
0
Citation726
0
Save
0

Ion channels enable electrical communication in bacterial communities

Arthur Prindle et al.Oct 20, 2015
+3
M
J
A
The study of bacterial ion channels has provided fundamental insights into the structural basis of neuronal signalling; however, the native role of ion channels in bacteria has remained elusive. Here we show that ion channels conduct long-range electrical signals within bacterial biofilm communities through spatially propagating waves of potassium. These waves result from a positive feedback loop, in which a metabolic trigger induces release of intracellular potassium, which in turn depolarizes neighbouring cells. Propagating through the biofilm, this wave of depolarization coordinates metabolic states among cells in the interior and periphery of the biofilm. Deletion of the potassium channel abolishes this response. As predicted by a mathematical model, we further show that spatial propagation can be hindered by specific genetic perturbations to potassium channel gating. Together, these results demonstrate a function for ion channels in bacterial biofilms, and provide a prokaryotic paradigm for active, long-range electrical signalling in cellular communities. Ion channels in bacterial biofilms are shown to conduct long-range electrical signals within the biofilm community through the propagation of potassium ions; as predicted by a simple mathematical model, potassium channel gating is shown to coordinate metabolic states between distant cells via electrical communication. Gürol Suel and colleagues show that ion channels in bacterial biofilms, which have no known functional role, conduct long-range electrical signals within the biofilm community through the propagation of potassium ions. Metabolic coordination between spatially segregated cells in a Bacillus subtilis biofilm is shown to be dependent on ion channel activity. Metabolic limitation triggers activation of the YugO potassium channel, which also propagates the extracellular potassium signal within the biofilm, resulting in a wave of depolarization that coordinates metabolic states among cells in the interior and periphery of the biofilm. Using a simple mathematical model the authors demonstrate that YugO channel gating is sufficient to promote efficient electrical communication between distant cells.
0
Citation667
0
Save
0

Cis-interactions between Notch and Delta generate mutually exclusive signalling states

David Sprinzak et al.Apr 25, 2010
+5
L
A
D
The Notch–Delta signal transduction pathway is critical for many processes in development and disease, with a particular role in generating distinct cell fates among groups of initially equivalent cells and sharply defining neighbouring regions in developing tissues. Recent research has provided an increasingly comprehensive list of components and molecular interactions underlying Notch signalling, without revealing how these two proteins lead to clear cell-fate decisions. Sprinzak et al. use quantitative time-lapse microscopy to show that Notch levels in a given cell are ultrasensitive to the amount of Delta present at the surface of the same cell — as opposed to that exposed by its neighbours. This abrupt molecular switch means that a cell becomes exclusively a sender of Delta signalling (with high Delta and low Notch) or a receiver (vice versa). Numerical modelling shows how this new design principle enhances the sharpness of developmental boundaries set by classical lateral inhibition. Notch and Delta are transmembrane proteins that allow neighbouring cells to communicate during development. Here, quantitative time-lapse microscopy has been used to show that the response of Notch to Delta on a neighbouring cell is graded, whereas its response to Delta on the same cell is sharp and occurs at a fixed threshold. A mathematical model explores how this new design principle enhances the sharpness of developmental boundaries set by classical lateral inhibition. The Notch–Delta signalling pathway allows communication between neighbouring cells during development1. It has a critical role in the formation of ‘fine-grained’ patterns, generating distinct cell fates among groups of initially equivalent neighbouring cells and sharply delineating neighbouring regions in developing tissues2,3,4,5. The Delta ligand has been shown to have two activities: it transactivates Notch in neighbouring cells and cis-inhibits Notch in its own cell. However, it remains unclear how Notch integrates these two activities and how the resulting system facilitates pattern formation. Here we report the development of a quantitative time-lapse microscopy platform for analysing Notch–Delta signalling dynamics in individual mammalian cells, with the aim of addressing these issues. By controlling both cis- and trans-Delta concentrations, and monitoring the dynamics of a Notch reporter, we measured the combined cis–trans input–output relationship in the Notch–Delta system. The data revealed a striking difference between the responses of Notch to trans- and cis-Delta: whereas the response to trans-Delta is graded, the response to cis-Delta is sharp and occurs at a fixed threshold, independent of trans-Delta. We developed a simple mathematical model that shows how these behaviours emerge from the mutual inactivation of Notch and Delta proteins in the same cell. This interaction generates an ultrasensitive switch between mutually exclusive sending (high Delta/low Notch) and receiving (high Notch/low Delta) signalling states. At the multicellular level, this switch can amplify small differences between neighbouring cells even without transcription-mediated feedback. This Notch–Delta signalling switch facilitates the formation of sharp boundaries and lateral-inhibition patterns in models of development, and provides insight into previously unexplained mutant behaviours.
0
Citation609
0
Save
0

Modeling a synthetic multicellular clock: Repressilators coupled by quorum sensing

Jordi Garćıa-Ojalvo et al.Jul 15, 2004
S
M
J
Diverse biochemical rhythms are generated by thousands of cellular oscillators that somehow manage to operate synchronously. In fields ranging from circadian biology to endocrinology, it remains an exciting challenge to understand how collective rhythms emerge in multicellular structures. Using mathematical and computational modeling, we study the effect of coupling through intercell signaling in a population of Escherichia coli cells expressing a synthetic biological clock. Our results predict that a diverse and noisy community of such genetic oscillators interacting through a quorum-sensing mechanism should self-synchronize in a robust way, leading to a substantially improved global rhythmicity in the system. As such, the particular system of coupled genetic oscillators considered here might be a good candidate to provide the first quantitative example of a synchronization transition in a population of biological oscillators.
0
Citation583
0
Save
0

Regulated Fluctuations in Nanog Expression Mediate Cell Fate Decisions in Embryonic Stem Cells

Tibor Kalmár et al.Jul 6, 2009
+4
P
C
T
There is evidence that pluripotency of mouse embryonic stem (ES) cells is associated with the activity of a network of transcription factors with Sox2, Oct4, and Nanog at the core. Using fluorescent reporters for the expression of Nanog, we observed that a population of ES cells is best described by a dynamic distribution of Nanog expression characterized by two peaks defined by high (HN) and low (LN) Nanog expression. Typically, the LN state is 5%–20% of the total population, depending on the culture conditions. Modelling of the activity of Nanog reveals that a simple network of Oct4/Sox2 and Nanog activity can account for the observed distribution and its properties as long as the transcriptional activity is tuned by transcriptional noise. The model also predicts that the LN state is unstable, something that is born out experimentally. While in this state, cells can differentiate. We suggest that transcriptional fluctuations in Nanog expression are an essential element of the pluripotent state and that the function of Sox2, Oct4, and Nanog is to act as a network that promotes and maintains transcriptional noise to interfere with the differentiation signals.
0
Citation557
0
Save
0

Complex photonics: Dynamics and applications of delay-coupled semiconductors lasers

Miguel Soriano et al.Mar 20, 2013
I
C
J
M
Complex phenomena in photonics, in particular, dynamical properties of semiconductor lasers due to delayed coupling, are reviewed. Although considered a nuisance for a long time, these phenomena now open interesting perspectives. Semiconductor laser systems represent excellent test beds for the study of nonlinear delay-coupled systems, which are of fundamental relevance in various areas. At the same time delay-coupled lasers provide opportunities for photonic applications. In this review an introduction into the properties of single and two delay-coupled lasers is followed by an extension to network motifs and small networks. A particular emphasis is put on emerging complex behavior, deterministic chaos, synchronization phenomena, and application of these properties that range from encrypted communication and fast random bit sequence generators to bioinspired information processing.
0

Spatiotemporal order out of noise

Francesc Sagués et al.Jul 13, 2007
J
J
F
Natural systems are undeniably subject to random fluctuations, arising from either environmental variability or thermal effects. The consideration of those fluctuations supposes to deal with noisy quantities whose variance might at times be a sizable fraction of their mean levels. It is known that, under these conditions, noisy fluctuations can interact with the system's nonlinearities to render counterintuitive behavior, in which an increase in the noise level produces a more regular behavior. In systems with spatial degrees of freedom, this regularity takes the form of spatiotemporal order. An overview is presented of the mechanisms through which noise induces, enhances, and sustains ordered behavior in passive and active nonlinear media, and different spatiotemporal phenomena are described resulting from these effects. The general theoretical framework used in the analysis of these effects is reviewed, encompassing the theory of stochastic partial differential equations and coupled sets of ordinary stochastic differential equations. Experimental observations of self-organized behavior arising out of noise are also described, and details on the numerical algorithms needed in the computer simulation of these problems are given.
0

Tunability and Noise Dependence in Differentiation Dynamics

Gürol Süel et al.Mar 22, 2007
+2
J
R
G
The dynamic process of differentiation depends on the architecture, quantitative parameters, and noise of underlying genetic circuits. However, it remains unclear how these elements combine to control cellular behavior. We analyzed the probabilistic and transient differentiation of Bacillus subtilis cells into the state of competence. A few key parameters independently tuned the frequency of initiation and the duration of competence episodes and allowed the circuit to access different dynamic regimes, including oscillation. Altering circuit architecture showed that the duration of competence events can be made more precise. We used an experimental method to reduce global cellular noise and showed that noise levels are correlated with frequency of differentiation events. Together, the data reveal a noise-dependent circuit that is remarkably resilient and tunable in terms of its dynamic behavior.
0
Citation445
0
Save
0

Metabolic co-dependence gives rise to collective oscillations within biofilms

Jintao Liu et al.Jul 1, 2015
+6
J
A
J
Cells that reside within a community can cooperate and also compete with each other for resources. It remains unclear how these opposing interactions are resolved at the population level. Here we investigate such an internal conflict within a microbial (Bacillus subtilis) biofilm community: cells in the biofilm periphery not only protect interior cells from external attack but also starve them through nutrient consumption. We discover that this conflict between protection and starvation is resolved through emergence of long-range metabolic co-dependence between peripheral and interior cells. As a result, biofilm growth halts periodically, increasing nutrient availability for the sheltered interior cells. We show that this collective oscillation in biofilm growth benefits the community in the event of a chemical attack. These findings indicate that oscillations support population-level conflict resolution by coordinating competing metabolic demands in space and time, suggesting new strategies to control biofilm growth. The emergence of long-range metabolic co-dependence within a biofilm drives oscillations in growth that resolve a social conflict between cooperation and competition, thereby increasing community-level fitness against chemical attack. During growth in a biofilm, cells at the periphery protect interior cells from external attack but can also starve them through nutrient consumption by the peripheral cells. Here Gürol Süel and colleagues find that this conflict between protection and starvation is resolved by the emergence of long-range metabolic co-dependence between cells at the periphery and the interior. In particular, they show in Bacillus subtilis biofilms that growth periodically halts, increasing the availability of nutrients to the sheltered interior cells, which in turn provide the metabolites necessary for growth at the periphery.
0
Citation420
0
Save
Load More