ML
Mario Lachetta
Author with expertise in Fluorescence Microscopy Techniques
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
2
(50% Open Access)
Cited by:
2
h-index:
6
/
i10-index:
5
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

Simulating digital micromirror devices for patterning coherent excitation light in structured illumination microscopy

Mario Lachetta et al.Oct 3, 2020
Summary Digital micromirror devices (DMDs) are spatial light modulators that employ the electro-mechanical movement of miniaturized mirrors to steer and thus modulate the light reflected of a mirror array. Their wide availability, low cost and high speed make them a popular choice both in consumer electronics such as video projectors, and scientific applications such as microscopy. High-end fluorescence microscopy systems typically employ laser light sources, which by their nature provide coherent excitation light. In super-resolution microscopy applications that use light modulation, most notably structured illumination microscopy (SIM), the coherent nature of the excitation light becomes a requirement to achieve optimal interference pattern contrast. The universal combination of DMDs and coherent light sources, especially when working with multiple different wavelengths, is unfortunately not straight forward. The substructure of the tilted micromirror array gives rise to a blazed grating , which has to be understood and which must be taken into account when designing a DMD-based illumination system. Here, we present a set of simulation frameworks that explore the use of DMDs in conjunction with coherent light sources, motivated by their application in SIM, but which are generalizable to other light patterning applications. This framework provides all the tools to explore and compute DMD-based diffraction effects and to simulate possible system alignment configurations computationally, which simplifies the system design process and provides guidance for setting up DMD-based microscopes.
1
Citation2
0
Save
0

DMD-based super-resolution structured illumination microscopy visualizes live cell dynamics at high speed and low cost

Alice Sandmeyer et al.Oct 8, 2019
Structured illumination microscopy (SIM) is among the most widely used super-resolution fluorescence microscopy techniques for visualizing the dynamics of cellular organelles, such as mitochondria, the endoplasmic reticulum, or the cytoskeleton. In its most wide-spread implementation, SIM relies on the creation of an interference pattern at the diffraction limit using the coherent addition of laser beams created by a diffraction pattern. Spatial light modulators based on liquid crystal displays allow SIM microscopes to run at image rates of up to hundreds of super-resolved images per second. Digital micromirror devices are another natural choice for creating interference-based SIM patterns, but are not used to their fullest potential because of the blazed grating effect. This effect arises due to the fixed angles between which the mirrors can be switched, creating a sawtooth arrangement of mirrors and thus leading to a change in the intensity distribution of the diffracted beams. This results in SIM patterns with varying modulation contrast which are prone to reconstruction artifacts. We have carefully studied the blazed grating effect of DMDs by simulations, varying a range of parameters and compared the simulation results with experiments. This allowed us to identify settings which result in very high modulation contrast across all angles and phases required to generate 2-beam SIM pattern. The use of inexpensive industry-grade CMOS cameras as well as low-cost lasers enabled us to construct a cost-effective, high-speed SIM system. Reconstruction of the super-resolved SIM images is achieved on a recently demonstrated parallel-computing platform, which allowed us to visualize living cells with super-resolution at multiple reconstructed frames per second in real time. We demonstrate the versatility of this new platform by imaging cellular organelle dynamics based on live-cell fluorescent stains as well as with fluorescent protein stained samples.