CS
Clive Svendsen
Author with expertise in Amyotrophic Lateral Sclerosis and Frontotemporal Dementia
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
32
(69% Open Access)
Cited by:
9,219
h-index:
84
/
i10-index:
237
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Induced pluripotent stem cells from a spinal muscular atrophy patient

Allison Ebert et al.Dec 21, 2008
Spinal muscular atrophy is one of the most common inherited forms of neurological disease leading to infant mortality. Patients have selective loss of lower motor neurons resulting in muscle weakness, paralysis and often death. Although patient fibroblasts have been used extensively to study spinal muscular atrophy, motor neurons have a unique anatomy and physiology which may underlie their vulnerability to the disease process. Here we report the generation of induced pluripotent stem cells from skin fibroblast samples taken from a child with spinal muscular atrophy. These cells expanded robustly in culture, maintained the disease genotype and generated motor neurons that showed selective deficits compared to those derived from the child’s unaffected mother. This is the first study to show that human induced pluripotent stem cells can be used to model the specific pathology seen in a genetically inherited disease. As such, it represents a promising resource to study disease mechanisms, screen new drug compounds and develop new therapies. The inherited disease spinal muscular atrophy (SMA), one of the most common neurological disorders causing death in childhood, is caused by mutations in both copies of the SMN1 gene. Little is known about SMA pathogenesis, partly because it is unique to humans who have two versions of this gene — SMN1 and SMN2; rodents and other lab model candidates have just one. Now a new technique has been developed that creates a tool for studying SMA disease pathology at the cellular level. Skin fibroblasts from a child with SMA (and for comparison from his unaffected mother) were used to generate induced pluripotent stem (iPS) cell lines. They form neural progenitor cultures that can produce differentiated neural tissue and motor neurons that maintain the disease phenotype. The cultures also responded to drugs known to elevate the mutated protein associated with the disease. Similar iPS technology may be of value in the study of other genetic disorders such as Huntington's disease. This paper generates an iPS cell line from patients with spinal muscular atrophy, an autosomal recessive genetic disorder that is one of the most common inherited forms of neurological disease in children.
0
Citation1,407
0
Save
0

A new method for the rapid and long term growth of human neural precursor cells

Clive Svendsen et al.Dec 1, 1998
A reliable source of human neural tissue would be of immense practical value to both neuroscientists and clinical neural transplantation trials. In this study, human precursor cells were isolated from the developing human cortex and, in the presence of both epidermal and fibroblast growth factor-2, grew in culture as sphere shaped clusters. Using traditional passaging techniques and culture mediums the rate of growth was extremely slow, and only a 12-fold expansion in total cell number could be achieved. However, when intact spheres were sectioned into quarters, rather than mechanically dissociated, cell–cell contacts were maintained and cellular trauma minimised which permitted the rapid and continual growth of each individual quarter. Using this method we have achieved a 1.5 million-fold increase in precursor cell number over a period of less than 200 days. Upon differentiation by exposure to a substrate, cells migrated out from the spheres and formed a monolayer of astrocytes and neurons. No oligodendrocytes were found to develop from these human neural precursor cells at late passages when whole spheres were differentiated. This simple and novel culture method allows the rapid expansion of large numbers of non-transformed human neural precursor cells which may be of use in drug discovery, ex vivo gene therapy and clinical neural transplantation.
0
Citation569
0
Save
0

Long-Term Survival of Human Central Nervous System Progenitor Cells Transplanted into a Rat Model of Parkinson's Disease

Clive Svendsen et al.Nov 1, 1997
Progenitor cells were isolated from the developing human central nervous system (CNS), induced to divide using a combination of epidermal growth factor and fibroblast growth factor-2, and then transplanted into the striatum of adult rats with unilateral dopaminergic lesions. Large grafts were found at 2 weeks survival which contained many undifferentiated cells, some of which were migrating into the host striatum. However, by 20 weeks survival, only a thin strip of cells remained at the graft core while a large number of migrating astrocytes labeled with a human-specific antibody could be seen throughout the striatum. Fully differentiated graft-derived neurons, also labeled with a human-specific antibody, were seen close to the transplant site in some animals. A number of these neurons expressed tyrosine hydroxylase and were sufficient to partially ameliorate lesion-induced behavioral deficits in two animals. These results show that expanded populations of human CNS progenitor cells maintained in a proliferative state in culture can migrate and differentiate into both neurons and astrocytes following intracerebral grafting. As such these cells may have potential for development as an alternative source of tissue for neural transplantation in degenerative diseases.
0
Citation449
0
Save
0

Human iPSC-Derived Blood-Brain Barrier Chips Enable Disease Modeling and Personalized Medicine Applications

Gad Vatine et al.Jun 1, 2019
The blood-brain barrier (BBB) tightly regulates the entry of solutes from blood into the brain and is disrupted in several neurological diseases. Using Organ-Chip technology, we created an entirely human BBB-Chip with induced pluripotent stem cell (iPSC)-derived brain microvascular endothelial-like cells (iBMECs), astrocytes, and neurons. The iBMECs formed a tight monolayer that expressed markers specific to brain vasculature. The BBB-Chip exhibited physiologically relevant transendothelial electrical resistance and accurately predicted blood-to-brain permeability of pharmacologics. Upon perfusing the vascular lumen with whole blood, the microengineered capillary wall protected neural cells from plasma-induced toxicity. Patient-derived iPSCs from individuals with neurological diseases predicted disease-specific lack of transporters and disruption of barrier integrity. By combining Organ-Chip technology and human iPSC-derived tissue, we have created a neurovascular unit that recapitulates complex BBB functions, provides a platform for modeling inheritable neurological disorders, and advances drug screening, as well as personalized medicine.
0

Dehydroepiandrosterone (DHEA) and DHEA-sulfate (DHEAS) protect hippocampal neurons against excitatory amino acid-induced neurotoxicity

V. Kimonides et al.Feb 17, 1998
DHEA, together with DHEAS, is the most abundant steroid in the blood of young adult humans. Levels in humans decline with age and during certain types of illness or stress. We have found that DHEA(S) can prevent or reduce the neurotoxic actions in the hippocampus of the glutamate agonists N -methyl- d -aspartic acid (NMDA) both in vitro and in vivo or α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and kainic acid in vitro . Pre-treatment with DHEA (10–100 nM for 6–8 h) protected primary hippocampal cultures from embryonic day 18 (E18) embryos against NMDA-induced toxicity (0.1, 1, 10, and 50 mM). DHEA added either with NMDA (1 mM) or 1 h later had lesser, but still significant, protective actions. DHEAS also reduced NMDA-induced toxicity (1 mM), although the lowest effective dose of DHEAS (100 nM) was higher than that of DHEA (10 nM). DHEA (100 nM) protected cultured neurons against the neurotoxic actions of either AMPA (25 μM) or kainic acid (1 mM) as well. In vivo , s.c. pellets of DHEA, which resulted in plasma levels that resembled those in young adult humans, protected hippocampal CA1/2 neurons against unilateral infusions of 5 or 10 nmol of NMDA. Because the release of glutamate has been implicated in the neural damage after cerebral ischemia and other neural insults, these results suggest that decreased DHEA levels may contribute significantly to the increased vulnerability of the aging or stressed human brain to such damage.
Load More