KH
Kun Huang
Author with expertise in Comprehensive Integration of Single-Cell Transcriptomic Data
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
18
(67% Open Access)
Cited by:
1,442
h-index:
48
/
i10-index:
166
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

AI in Medical Imaging Informatics: Current Challenges and Future Directions

Andreas Panayides et al.May 29, 2020
This paper reviews state-of-the-art research solutions across the spectrum of medical imaging informatics, discusses clinical translation, and provides future directions for advancing clinical practice. More specifically, it summarizes advances in medical imaging acquisition technologies for different modalities, highlighting the necessity for efficient medical data management strategies in the context of AI in big healthcare data analytics. It then provides a synopsis of contemporary and emerging algorithmic methods for disease classification and organ/ tissue segmentation, focusing on AI and deep learning architectures that have already become the de facto approach. The clinical benefits of in-silico modelling advances linked with evolving 3D reconstruction and visualization applications are further documented. Concluding, integrative analytics approaches driven by associate research branches highlighted in this study promise to revolutionize imaging informatics as known today across the healthcare continuum for both radiology and digital pathology applications. The latter, is projected to enable informed, more accurate diagnosis, timely prognosis, and effective treatment planning, underpinning precision medicine.
0

SALMON: Survival Analysis Learning With Multi-Omics Neural Networks on Breast Cancer

Zhi Huang et al.Mar 8, 2019
Improved cancer prognosis is a central goal for precision health medicine. Though many models can predict differential survival from data, there is a strong need for sophisticated algorithms that can aggregate and filter relevant predictors from increasingly complex data inputs. In turn, these models should provide deeper insight into which types of data are most relevant to improve prognosis. Deep Learning-based neural networks offer a potential solution for both problems because they are highly flexible and account for data complexity in a non-linear fashion. In this study, we implement Deep Learning-based networks to determine how gene expression data predicts Cox regression survival in breast cancer. We accomplish this through an algorithm called SALMON (Survival Analysis Learning with Multi-Omics Neural Networks), which aggregates and simplifies gene expression data and cancer biomarkers to enable prognosis prediction. The results revealed improved performance when more omics data were used in model construction. Rather than use raw gene expression values as model inputs, we innovatively use eigengene modules from the result of gene co-expression network analysis. The corresponding high impact co-expression modules and other omics data are identified by feature selection technique, then examined by conducting enrichment analysis and exploiting biological functions, escalated the interpretation of input feature from gene level to co-expression modules level. Our study shows the feasibility of discovering breast cancer related co-expression modules, sketch a blueprint of future endeavors on Deep Learning-based survival analysis.
0
Citation188
0
Save
0

ICTD: A semi-supervised cell type identification and deconvolution method for multi-omics data

Wennan Chang et al.Sep 27, 2018
Abstract We developed a novel deconvolution method, namely I nference of C ell T ypes and D econvolution (ICTD) that addresses the fundamental issue of identifiability and robustness in current tissue data deconvolution problem. ICTD provides substantially new capabilities for omics data based characterization of a tissue microenvironment, including (1) maximizing the resolution in identifying resident cell and sub types that truly exists in a tissue, (2) identifying the most reliable marker genes for each cell type, which are tissue and data set specific, (3) handling the stability problem with co-linear cell types, (4) co-deconvoluting with available matched multi-omics data, and (5) inferring functional variations specific to one or several cell types. ICTD is empowered by (i) rigorously derived mathematical conditions of identifiable cell type and cell type specific functions in tissue transcriptomics data and (ii) a semi supervised approach to maximize the knowledge transfer of cell type and functional marker genes identified in single cell or bulk cell data in the analysis of tissue data, and (iii) a novel unsupervised approach to minimize the bias brought by training data. Application of ICTD on real and single cell simulated tissue data validated that the method has consistently good performance for tissue data coming from different species, tissue microenvironments, and experimental platforms. Other than the new capabilities, ICTD outperformed other state-of-the-art devolution methods on prediction accuracy, the resolution of identifiable cell, detection of unknown sub cell types, and assessment of cell type specific functions. The premise of ICTD also lies in characterizing cell-cell interactions and discovering cell types and prognostic markers that are predictive of clinical outcomes.
0
Citation10
0
Save
0

Gradient boosting reveals spatially diverse cholesterol gene signatures in colon cancer

Xiuxiu Yang et al.Nov 29, 2024
Colon cancer (CC) is the second most common cause of cancer deaths and the fourth most prevalent cancer in the United States. Recently cholesterol metabolism has been identified as a potential therapeutic avenue due to its consistent association with tumor treatment effects and overall prognosis. We conducted differential gene analysis and KEGG pathway analysis on paired tumor and adjacent-normal samples from the TCGA Colon Adenocarcinoma project, identifying that bile secretion was the only significantly downregulated pathway. To evaluate the relationship between cholesterol metabolism and CC prognosis, we used the genes from this pathway in several statistical models like Cox proportional Hazard (CPH), Random Forest (RF), Lasso Regression (LR), and the eXtreme Gradient Boosting (XGBoost) to identify the genes which contributed highly to the predictive ability of all models, ADCY5, and SLC2A1. We demonstrate that using cholesterol metabolism genes with XGBoost models improves stratification of CC patients into low and high-risk groups compared with traditional CPH, RF and LR models. Spatial transcriptomics (ST) revealed that SLC2A1 (glucose transporter 1, GLUT1) colocalized with small blood vessels. ADCY5 localized to stromal regions in both the ST and protein immunohistochemistry. Interestingly, both these significant genes are expressed in tissues other than the tumor itself, highlighting the complex interplay between the tumor and microenvironment, and that druggable targets may be found in the ability to modify how "normal" tissue interacts with tumors.
Load More