SS
Scott Soderling
Author with expertise in Molecular Mechanisms of Synaptic Plasticity and Neurological Disorders
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
17
(88% Open Access)
Cited by:
1,250
h-index:
40
/
i10-index:
55
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Characterization of Ca2+/calmodulin-dependent protein kinase IV. Role in transcriptional regulation.

Hervé Enslen et al.Jun 1, 1994
We have characterized Ca2+/calmodulin-dependent protein kinase IV (CaM kinase IV), expressed using the baculovirus/Sf9 cell system, to assess its potential role in Ca2+-dependent transcriptional regulation. CaM kinase IV was strongly inhibited in vitro by KN-62, a specific CaM kinase inhibitor which suppresses Ca2+-dependent transcription of several genes, so we tested whether CaM kinase IV could stimulate transcription. Co-transfection of COS-1 cells by cDNA for CaM kinase IV gave 3-fold stimulation of a reporter gene expression, whereas co-transfection with CaM kinase II gave no transcriptional stimulation. Since this transcriptional response was mediated by phosphorylation of cAMP responsive element-binding protein (CREB), we determined the kinetics and site specificities of CaM kinases IV and II for phosphorylating CREB in vitro. CaM kinases IV and II and cAMP kinase (protein kinase A) all had similar Km values for CREB (1-5 microns), but the Vmax of CaM kinase IV was 40-fold lower than those of CaM kinase II and protein kinase A. Although all three kinases phosphorylated Ser133 in CREB, CaM kinase II also gave equal phosphorylation of a second site which was not Ser98. The two CREB phosphorylation sites were separately 32P-labeled, and the abilities of protein phosphatases 1, 2A, and 2B (calcineurin) to dephosphorylate them were tested. Our results show that all three phosphatases could dephosphorylate both sites, and calcineurin was a stronger catalyst for dephosphorylating site 1 (Ser133) than for site 2. These results indicate that CaM kinase IV may be important in Ca2+-dependent transcriptional regulation through phosphorylation of Ser133 in CREB. The fact that CaM kinase II phosphorylates another site in addition to Ser133 in CREB raises the possibility that this second phosphorylation site may account for the suppressed phosphorylation site may account for the suppressed ability of CaM kinase II to enhance transcription through the CRE/CREB system. In addition multiple protein phosphatases, including calcineurin, may exert a modulatory effect on transcription depending on which site they dephosphorylate.
0

Astrocytes Assemble Thalamocortical Synapses by Bridging NRX1α and NL1 via Hevin

Sandeep Singh et al.Jan 1, 2016
Highlights•Astrocyte-secreted hevin is a pre- and postsynaptic organizer•Hevin induces thalamocortical synapse formation by bridging NRX1α and NL1•Hevin is required for recruitment of NL1 and NMDAR to excitatory synapses in vivo•Astrocyte-secreted hevin is necessary for ocular dominance plasticitySummaryProper establishment of synapses is critical for constructing functional circuits. Interactions between presynaptic neurexins and postsynaptic neuroligins coordinate the formation of synaptic adhesions. An isoform code determines the direct interactions of neurexins and neuroligins across the synapse. However, whether extracellular linker proteins can expand such a code is unknown. Using a combination of in vitro and in vivo approaches, we found that hevin, an astrocyte-secreted synaptogenic protein, assembles glutamatergic synapses by bridging neurexin-1alpha and neuroligin-1B, two isoforms that do not interact with each other. Bridging of neurexin-1alpha and neuroligin-1B via hevin is critical for the formation and plasticity of thalamocortical connections in the developing visual cortex. These results show that astrocytes promote the formation of synapses by modulating neurexin/neuroligin adhesions through hevin secretion. Our findings also provide an important mechanistic insight into how mutations in these genes may lead to circuit dysfunction in diseases such as autism.Graphical abstract
8

Action potential-coupled Rho GTPase signaling drives presynaptic plasticity

Shataakshi Dube et al.Oct 8, 2020
ABSTRACT In contrast to their postsynaptic counterparts, the contributions of activity-dependent cytoskeletal signaling to presynaptic plasticity remain controversial and poorly understood. To identify and evaluate these signaling pathways, we conducted a proteomic analysis of the presynaptic cytomatrix using in vivo biotin identification (iBioID). The resultant proteome was heavily enriched for actin cytoskeleton regulators, including Rac1, a Rho GTPase that activates the Arp2/3 complex to nucleate branched actin filaments. Strikingly, we find Rac1 and Arp2/3 are closely associated with presynaptic vesicle membranes and negatively regulate synaptic vesicle replenishment at both excitatory and inhibitory synapses. Using optogenetics and fluorescence lifetime imaging, we show this pathway bidirectionally sculpts short-term synaptic depression and that its presynaptic activation is coupled to action potentials by voltage-gated calcium influx. Thus, this study provides a new proteomic framework for understanding presynaptic physiology and uncovers a previously unrecognized mechanism of actin-regulated short-term presynaptic plasticity that is conserved across cell types.
8
Citation3
0
Save
0

Identification of new ciliary signaling pathways in the brain and insights into neurological disorders

Abdelhalim Loukil et al.Dec 21, 2023
Abstract Primary cilia are conserved sensory hubs essential for signaling transduction and embryonic development. Ciliary dysfunction causes a variety of developmental syndromes with neurological features and cognitive impairment, whose basis mostly remains unknown. Despite connections to neural function, the primary cilium remains an overlooked organelle in the brain. Most neurons have a primary cilium; however, it is still unclear how this organelle modulates brain architecture and function, given the lack of any systemic dissection of neuronal ciliary signaling. Here, we present the first in vivo glance at the molecular composition of cilia in the mouse brain. We have adapted in vivo BioID (iBioID), targeting the biotin ligase BioID2 to primary cilia in neurons. We identified tissue-specific signaling networks enriched in neuronal cilia, including Eph/Ephrin and GABA receptor signaling pathways. Our iBioID ciliary network presents a wealth of neural ciliary hits that provides new insights into neurological disorders. Our findings are a promising first step in defining the fundamentals of ciliary signaling and their roles in shaping neural circuits and behavior. This work can be extended to pathological conditions of the brain, aiming to identify the molecular pathways disrupted in the brain cilium. Hence, finding novel therapeutic strategies will help uncover and leverage the therapeutic potential of the neuronal cilium.
0
Citation2
0
Save
1

Proximity Analysis of Native Proteomes Reveals Interactomes Predictive of Phenotypic Modifiers of Autism and Related Neurodevelopmental Conditions

Yudong Gao et al.Oct 7, 2022
Abstract One of the main drivers of autism spectrum disorder is risk alleles within hundreds of genes, which may interact within shared but unknown protein complexes. Here we develop a scalable genome-editing-mediated approach to target 14 high-confidence autism risk genes within the mouse brain for proximity-based endogenous proteomics, achieving high specificity spatial interactomes compared to prior methods. The resulting native proximity interactomes are enriched for human genes dysregulated in the brain of autistic individuals and reveal unexpected and highly significant interactions with other lower-confidence autism risk gene products, positing new avenues to prioritize genetic risk. Importantly, the datasets are enriched for shared cellular functions and genetic interactions that may underlie the condition. We test this notion by spatial proteomics and CRISPR-based regulation of expression in two autism models, demonstrating functional interactions that modulate mechanisms of their dysregulation. Together, these results reveal native proteome networks in vivo relevant to autism, providing new inroads for understanding and manipulating the cellular drivers underpinning its etiology.
1
Citation2
0
Save
1

De NovoGeneration and Prioritization of Target-Binding Peptide Motifs from Sequence Alone

Suhaas Bhat et al.Jun 28, 2023
Abstract Designing binders to target undruggable proteins presents a formidable challenge in drug discovery, requiring innovative approaches to overcome the lack of putative binding sites. Recently, generative models have been trained to design binding proteins from the three-dimensional structure of a target protein alone, but thus exclude design to disordered or conformationally unstable targets. In this work, we provide a generalizable algorithmic framework to design short, target-binding peptide motifs, requiring only the amino acid sequence of the target protein. To do this, we propose a process to generate naturalistic peptide candidates through Gaussian perturbation of the peptidic latent space of the state-of-the-art ESM-2 protein language model, and subsequently screen these de novo linear sequences for target-selective interaction activity via a CLIP-based contrastive learning architecture. By integrating these generative and discriminative steps, we create a Pep tide Pr ioritization via CLIP ( PepPrCLIP ) pipeline and validate highly-ranked, target-specific peptide motifs experimentally via fusion to E3 ubiquitin ligase domains, demonstrating functionally potent degradation of conventionally undruggable targets in vitro . Overall, our design strategy provides a modular toolkit for designing short binding motifs to any target protein without the reliance on stable and ordered tertiary structure, enabling generation of programmable modulators to undruggable and disordered proteins such as transcription factors and fusion oncoproteins.
1
Citation2
0
Save
Load More