Abstract The burgeoning epidemic caused by novel coronavirus 2019 (2019-nCoV) is currently a global concern. Angiotensin-converting enzyme-2 (ACE2) is a receptor of 2019-nCoV spike 1 protein (S1) and mediates viral entry into host cells. Despite the abundance of ACE2 in small intestine, few digestive symptoms are observed in patients infected by 2019-nCoV. Herein, we investigated the interactions between ACE2 and human defensins (HDs) specifically secreted by intestinal Paneth cells. The lectin-like HD5, rather than HD6, bound ACE2 with a high affinity of 39.3 nM and weakened the subsequent recruitment of 2019-nCoV S1. The cloak of HD5 on the ligand-binding domain of ACE2 was confirmed by molecular dynamic simulation. A remarkable dose-dependent preventive effect of HD5 on 2019-nCoV S1 binding to intestinal epithelial cells was further evidenced by in vitro experiments. Our findings unmasked the innate defense function of lectin-like intestinal defensin against 2019-nCoV, which may provide new insights into the prevention and treatment of 2019-nCoV infection.