JG
Junwei Gai
Author with expertise in Asthma
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
3
(67% Open Access)
Cited by:
222
h-index:
14
/
i10-index:
15
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

The genome and transcriptome of Japanese flounder provide insights into flatfish asymmetry

Changwei Shao et al.Dec 5, 2016
Songlin Chen, Manfred Schartl, Qingyin Wang, Deborah M. Power and colleagues analyze the genome of the Japanese flounder and its transcriptome dynamics during metamorphosis. They report a role for thyroid hormone and retinoic acid signaling, as well as phototransduction pathways, in the regulation of craniofacial asymmetry. Flatfish have the most extreme asymmetric body morphology of vertebrates. During metamorphosis, one eye migrates to the contralateral side of the skull, and this migration is accompanied by extensive craniofacial transformations and simultaneous development of lopsided body pigmentation1,2,3,4,5. The evolution of this developmental and physiological innovation remains enigmatic. Comparative genomics of two flatfish and transcriptomic analyses during metamorphosis point to a role for thyroid hormone and retinoic acid signaling, as well as phototransduction pathways. We demonstrate that retinoic acid is critical in establishing asymmetric pigmentation and, via cross-talk with thyroid hormones, in modulating eye migration. The unexpected expression of the visual opsins from the phototransduction pathway in the skin translates illumination differences and generates retinoic acid gradients that underlie the generation of asymmetry. Identifying the genetic underpinning of this unique developmental process answers long-standing questions about the evolutionary origin of asymmetry, but it also provides insight into the mechanisms that control body shape in vertebrates.
0
Citation222
0
Save
0

A Novel Inhalable Nanobody Targeting IL-4Rα for the Treatment of Asthma

Mengyan Zhu et al.Jun 1, 2024
Background Inhalable biologics represent a promising approach to improve the efficacy and safety of asthma treatment. Although several monoclonal antibodies (mAbs) targeting IL-4Rα have been approved or are undergoing clinical trials, the development of inhalable mAbs targeting IL-4Rα presents significant challenges. Objective Capitalizing on the distinctive advantages of nanobodies (Nbs) in maintaining efficacy during storage and administration, we sought to develop a novel inhalable IL-4Rα Nb for effectively treating asthma. Methods Three IL-4Rα immunized Nb libraries were utilized to generate specific and functional IL-4Rα Nbs. LQ036, a bivalent Nb comprising two HuNb103 units, was constructed with a high affinity and specificity for hIL-4Rα. The efficacy, pharmacokinetic and safety of inhaled LQ036 were evaluated in B-hIL4/hIL4Ra humanized mice. Results LQ036 inhibited secreted embryonic alkaline phosphatase (SEAP) reporter activity, TF-1 cell proliferation, and suppressed pSTAT6 in T cells from asthma patients. Crystal structure analysis revealed a binding region similar to Dupilumab but with higher affinity, leading to better efficacy in blocking the signaling pathway. HuNb103 competed with IL-4 and IL-13 for IL-4Rα binding. Additionally, LQ036 significantly inhibited OVA-specific IgE levels in serum, CCL17 levels in BALF, bronchial mucous cell hyperplasia, and airway goblet cell hyperplasia in B-hIL4/hIL4Ra humanized mice. Inhaled LQ036 exhibited favorable pharmacokinetics, safety and tissue distribution, with higher concentrations observed in the lungs and bronchi. Conclusion These findings from preclinical studies establish the safety and efficacy of inhaled LQ036, underscoring its potential as a pioneering inhalable biologic therapy for asthma.