HS
Haim Sompolinsky
Author with expertise in Neuronal Oscillations in Cortical Networks
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
33
(61% Open Access)
Cited by:
12,919
h-index:
77
/
i10-index:
158
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Theory of orientation tuning in visual cortex.

Rani Ben-Yishai et al.Apr 25, 1995
The role of intrinsic cortical connections in processing sensory input and in generating behavioral output is poorly understood. We have examined this issue in the context of the tuning of neuronal responses in cortex to the orientation of a visual stimulus. We analytically study a simple network model that incorporates both orientation-selective input from the lateral geniculate nucleus and orientation-specific cortical interactions. Depending on the model parameters, the network exhibits orientation selectivity that originates from within the cortex, by a symmetry-breaking mechanism. In this case, the width of the orientation tuning can be sharp even if the lateral geniculate nucleus inputs are only weakly anisotropic. By using our model, several experimental consequences of this cortical mechanism of orientation tuning are derived. The tuning width is relatively independent of the contrast and angular anisotropy of the visual stimulus. The transient population response to changing of the stimulus orientation exhibits a slow "virtual rotation." Neuronal cross-correlations exhibit long time tails, the sign of which depends on the preferred orientations of the cells and the stimulus orientation.
0

Statistical mechanics of neural networks near saturation

Daniel Amit et al.Jan 1, 1987
The Hopfield model of a neural network is studied near its saturation, i.e., when the number p of stored patterns increases with the size of the network N, as p = αN. The mean-field theory for this system is described in detail. The system possesses, at low α, both a spin-glass phase and 2p dynamically stable degenerate ferromagnetic phases. The latter have essentially full macroscopic overlaps with the memorized patterns, and provide effective associative memory, despite the spin-glass features. The network can retrieve patterns, at T = 0, with an error of less than 1.5% for α <αc = 0.14. At αc the ferromagnetic (FM) retrieval states disappear discontinuously. Numerical simulations show that even above αc the overlaps with the sored patterns are not zero, but the level of error precludes meaningful retrieval. The difference between the statistical mechanics and the simulations is discussed. As α decreases below 0.05 the FM retrieval states become ground states of the system, and for α < 0.03 mixture states appear. The level of storage creates noise, akin to temperature at finite p. Replica symmetry breaking is found to be salient in the spin-glass state, but in the retrieval states it appears at extremely low temperatures, and is argued to have a very weak effect. This is corroborated by simulations. The study is extended to survey the phase diagram of the system in the presence of stochastic synaptic noise (temperature), and the effect of external fields (neuronal thresholds) coupled to groups of patterns. It is found that a field coupled to many patterns has a very limited utility in enhancing their learning. Finally, we discuss the robustness of the network to the relaxation of various underlying assumptions, as well as some new trends in the study of neural networks.
0

Chaotic Balanced State in a Model of Cortical Circuits

Carl Vreeswijk et al.Aug 1, 1998
The nature and origin of the temporal irregularity in the electrical activity of cortical neurons in vivo are not well understood. We consider the hypothesis that this irregularity is due to a balance of excitatory and inhibitory currents into the cortical cells. We study a network model with excitatory and inhibitory populations of simple binary units. The internal feedback is mediated by relatively large synaptic strengths, so that the magnitude of the total excitatory and inhibitory feedback is much larger than the neuronal threshold. The connectivity is random and sparse. The mean number of connections per unit is large, though small compared to the total number of cells in the network. The network also receives a large, temporally regular input from external sources. We present an analytical solution of the mean-field theory of this model, which is exact in the limit of large network size. This theory reveals a new cooperative stationary state of large networks, which we term a balanced state. In this state, a balance between the excitatory and inhibitory inputs emerges dynamically for a wide range of parameters, resulting in a net input whose temporal fluctuations are of the same order as its mean. The internal synaptic inputs act as a strong negative feedback, which linearizes the population responses to the external drive despite the strong nonlinearity of the individual cells. This feedback also greatly stabilizes the system's state and enables it to track a time-dependent input on time scales much shorter than the time constant of a single cell. The spatiotemporal statistics of the balanced state are calculated. It is shown that the autocorrelations decay on a short time scale, yielding an approximate Poissonian temporal statistics. The activity levels of single cells are broadly distributed, and their distribution exhibits a skewed shape with a long power-law tail. The chaotic nature of the balanced state is revealed by showing that the evolution of the microscopic state of the network is extremely sensitive to small deviations in its initial conditions. The balanced state generated by the sparse, strong connections is an asynchronous chaotic state. It is accompanied by weak spatial cross-correlations, the strength of which vanishes in the limit of large network size. This is in contrast to the synchronized chaotic states exhibited by more conventional network models with high connectivity of weak synapses.
0

Simple models for reading neuronal population codes.

H. Seung et al.Nov 15, 1993
In many neural systems, sensory information is distributed throughout a population of neurons. We study simple neural network models for extracting this information. The inputs to the networks are the stochastic responses of a population of sensory neurons tuned to directional stimuli. The performance of each network model in psychophysical tasks is compared with that of the optimal maximum likelihood procedure. As a model of direction estimation in two dimensions, we consider a linear network that computes a population vector. Its performance depends on the width of the population tuning curves and is maximal for width, which increases with the level of background activity. Although for narrowly tuned neurons the performance of the population vector is significantly inferior to that of maximum likelihood estimation, the difference between the two is small when the tuning is broad. For direction discrimination, we consider two models: a perceptron with fully adaptive weights and a network made by adding an adaptive second layer to the population vector network. We calculate the error rates of these networks after exhaustive training to a particular direction. By testing on the full range of possible directions, the extent of transfer of training to novel stimuli can be calculated. It is found that for threshold linear networks the transfer of perceptual learning is nonmonotonic. Although performance deteriorates away from the training stimulus, it peaks again at an intermediate angle. This nonmonotonicity provides an important psychophysical test of these models.
0

Statistical mechanics of learning from examples

H. Seung et al.Apr 1, 1992
Learning from examples in feedforward neural networks is studied within a statistical-mechanical framework. Training is assumed to be stochastic, leading to a Gibbs distribution of networks characterized by a temperature parameter T. Learning of realizable rules as well as of unrealizable rules is considered. In the latter case, the target rule cannot be perfectly realized by a network of the given architecture. Two useful approximate theories of learning from examples are studied: the high-temperature limit and the annealed approximation. Exact treatment of the quenched disorder generated by the random sampling of the examples leads to the use of the replica theory. Of primary interest is the generalization curve, namely, the average generalization error ${\mathrm{\ensuremath{\epsilon}}}_{\mathit{g}}$ versus the number of examples P used for training. The theory implies that, for a reduction in ${\mathrm{\ensuremath{\epsilon}}}_{\mathit{g}}$ that remains finite in the large-N limit, P should generally scale as \ensuremath{\alpha}N, where N is the number of independently adjustable weights in the network. We show that for smooth networks, i.e., those with continuously varying weights and smooth transfer functions, the generalization curve asymptotically obeys an inverse power law. In contrast, for nonsmooth networks other behaviors can appear, depending on the nature of the nonlinearities as well as the realizability of the rule. In particular, a discontinuous learning transition from a state of poor to a state of perfect generalization can occur in nonsmooth networks learning realizable rules.We illustrate both gradual and continuous learning with a detailed analytical and numerical study of several single-layer perceptron models. Comparing with the exact replica theory of perceptron learning, we find that for realizable rules the high-temperature and annealed theories provide very good approximations to the generalization performance. Assuming this to hold for multilayer networks as well, we propose a classification of possible asymptotic forms of learning curves in general realizable models. For unrealizable rules we find that the above approximations fail in general to predict correctly the shapes of the generalization curves. Another indication of the important role of quenched disorder for unrealizable rules is that the generalization error is not necessarily a monotonically increasing function of temperature. Also, unrealizable rules can possess genuine spin-glass phases indicative of degenerate minima separated by high barriers.
Load More