VC
Vanessa Castillo
Author with expertise in Macrophage Activation and Polarization
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
9
(100% Open Access)
Cited by:
277
h-index:
8
/
i10-index:
8
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

The Biodistribution and Immune Suppressive Effects of Breast Cancer–Derived Exosomes

Shu Wen et al.Oct 20, 2016
Small membranous secretions from tumor cells, termed exosomes, contribute significantly to intercellular communication and subsequent reprogramming of the tumor microenvironment. Here, we use optical imaging to determine that exogenously administered fluorescently labeled exosomes derived from highly metastatic murine breast cancer cells distributed predominantly to the lung of syngeneic mice, a frequent site of breast cancer metastasis. At the sites of accumulation, exosomes were taken up by CD45+ bone marrow-derived cells. Subsequent long-term conditioning of naïve mice with exosomes from highly metastatic breast cancer cells revealed the accumulation of myeloid-derived suppressor cells in the lung and liver. This favorable immune suppressive microenvironment was capable of promoting metastatic colonization in the lung and liver, an effect not observed from exosomes derived from nonmetastatic cells and liposome control vesicles. Furthermore, we determined that breast cancer exosomes directly suppressed T-cell proliferation and inhibited NK cell cytotoxicity, and hence likely suppressed the anticancer immune response in premetastatic organs. Together, our findings provide novel insight into the tissue-specific outcomes of breast cancer-derived exosome accumulation and their contribution to immune suppression and promotion of metastases. Cancer Res; 76(23); 6816-27. ©2016 AACR.
14

AI-guided discovery of the invariant host response to viral pandemics

Debashis Sahoo et al.Sep 22, 2020
We sought to define the host immune response, a.k.a, the "cytokine storm" that has been implicated in fatal COVID-19 using an AI-based approach. Over 45,000 transcriptomic datasets of viral pandemics were analyzed to extract a 166-gene signature using ACE2 as a 'seed' gene; ACE2 was rationalized because it encodes the receptor that facilitates the entry of SARS-CoV-2 (the virus that causes COVID-19) into host cells. Surprisingly, this 166-gene signature was conserved in all vi ral p andemics, including COVID-19, and a subset of 20-genes classified disease severity, inspiring the nomenclatures ViP and severe-ViP signatures, respectively. The ViP signatures pinpointed a paradoxical phenomenon wherein lung epithelial and myeloid cells mount an IL15 cytokine storm, and epithelial and NK cell senescence and apoptosis determines severity/fatality. Precise therapeutic goals were formulated and subsequently validated in high-dose SARS-CoV-2-challenged hamsters using neutralizing antibodies that abrogate SARS-CoV-2•ACE2 engagement or a directly acting antiviral agent, EIDD-2801. IL15/IL15RA were elevated in the lungs of patients with fatal disease, and plasma levels of the cytokine tracked with disease severity. Thus, the ViP signatures provide a quantitative and qualitative framework for titrating the immune response in viral pandemics and may serve as a powerful unbiased tool to rapidly assess disease severity and vet candidate drugs.The host immune response in COVID-19.Evidence before this study: The SARS-CoV-2 pandemic has inspired many groups to find innovative methodologies that can help us understand the host immune response to the virus; unchecked proportions of such immune response have been implicated in fatality. We searched GEO and ArrayExpress that provided many publicly available gene expression data that objectively measure the host immune response in diverse conditions. However, challenges remain in identifying a set of host response events that are common to every condition. There are no studies that provide a reproducible assessment of prognosticators of disease severity, the host response, and therapeutic goals. Consequently, therapeutic trials for COVID-19 have seen many more 'misses' than 'hits'. This work used multiple (> 45,000) gene expression datasets from GEO and ArrayExpress and analyzed them using an unbiased computational approach that relies upon fundamentals of gene expression patterns and mathematical precision when assessing them.Added value of this study: This work identifies a signature that is surprisingly conserved in all viral pandemics, including Covid-19, inspiring the nomenclature ViP-signature. A subset of 20-genes classified disease severity in respiratory pandemics. The ViP signatures pinpointed the nature and source of the 'cytokine storm' mounted by the host. They also helped formulate precise therapeutic goals and rationalized the repurposing of FDA-approved drugs.Implications of all the available evidence: The ViP signatures provide a quantitative and qualitative framework for assessing the immune response in viral pandemics when creating pre-clinical models; they serve as a powerful unbiased tool to rapidly assess disease severity and vet candidate drugs.
14
Citation9
0
Save
0

COVID-19 lung disease shares driver AT2 cytopathic features with Idiopathic pulmonary fibrosis

Saptarshi Sinha et al.Nov 30, 2021
In the aftermath of Covid-19, some patients develop a fibrotic lung disease, i.e., p ost- C OVID-19 l ung d isease (PCLD), for which we currently lack insights into pathogenesis, disease models, or treatment options.Using an AI-guided approach, we analyzed > 1000 human lung transcriptomic datasets associated with various lung conditions using two viral pandemic signatures (ViP and sViP) and one covid lung-derived signature. Upon identifying similarities between COVID-19 and idiopathic pulmonary fibrosis (IPF), we subsequently dissected the basis for such similarity from molecular, cytopathic, and immunologic perspectives using a panel of IPF-specific gene signatures, alongside signatures of alveolar type II (AT2) cytopathies and of prognostic monocyte-driven processes that are known drivers of IPF. Transcriptome-derived findings were used to construct protein-protein interaction (PPI) network to identify the major triggers of AT2 dysfunction. Key findings were validated in hamster and human adult lung organoid (ALO) pre-clinical models of COVID-19 using immunohistochemistry and qPCR.COVID-19 resembles IPF at a fundamental level; it recapitulates the gene expression patterns (ViP and IPF signatures), cytokine storm (IL15-centric), and the AT2 cytopathic changes, e.g., injury, DNA damage, arrest in a transient, damage-induced progenitor state, and senescence-associated secretory phenotype (SASP). These immunocytopathic features were induced in pre-clinical COVID models (ALO and hamster) and reversed with effective anti-CoV-2 therapeutics in hamsters. PPI-network analyses pinpointed ER stress as one of the shared early triggers of both diseases, and IHC studies validated the same in the lungs of deceased subjects with COVID-19 and SARS-CoV-2-challenged hamster lungs. Lungs from tg- mice, in which ER stress is induced specifically in the AT2 cells, faithfully recapitulate the host immune response and alveolar cytopathic changes that are induced by SARS-CoV-2.Like IPF, COVID-19 may be driven by injury-induced ER stress that culminates into progenitor state arrest and SASP in AT2 cells. The ViP signatures in monocytes may be key determinants of prognosis. The insights, signatures, disease models identified here are likely to spur the development of therapies for patients with IPF and other fibrotic interstitial lung diseases.This work was supported by the National Institutes for Health grants R01-GM138385 and AI155696 and funding from the Tobacco-Related disease Research Program (R01RG3780).Severe COVID-19 triggers cellular processes seen in fibrosing Interstitial Lung Disease.Evidence before this study: In its aftermath, the COVID-19 pandemic has left many survivors, almost a third of those who recovered, with a mysterious long-haul form of the disease which culminates in a fibrotic form of interstitial lung disease (post-COVID-19 ILD). Post-COVID-19 ILD remains a largely unknown entity. Currently, we lack insights into the core cytopathic features that drive this condition.Added value of this study: Using an AI-guided approach, which involves the use of sets of gene signatures, protein-protein network analysis, and a hamster model of COVID-19, we have revealed here that COVID-19 -lung fibrosis resembles IPF, the most common form of ILD, at a fundamental levelâ€"showing similar gene expression patterns in the lungs and blood, and dysfunctional AT2 processes (ER stress, telomere instability, progenitor cell arrest, and senescence). These findings are insightful because AT2 cells are known to contain an elegant quality control network to respond to intrinsic or extrinsic stress; a failure of such quality control results in diverse cellular phenotypes, of which ER stress appears to be a point of convergence, which appears to be sufficient to drive downstream fibrotic remodeling in the lung.Implications of all the available evidence: Because unbiased computational methods identified the shared fundamental aspects of gene expression and cellular processes between COVID-19 and IPF, the impact of our findings is likely to go beyond COVID-19 or any viral pandemic. The insights, tools (disease models, gene signatures, and biomarkers), and mechanisms identified here are likely to spur the development of therapies for patients with IPF and, other fibrotic interstitial lung diseases, all of whom have limited or no treatment options. To dissect the validated prognostic biomarkers to assess and track the risk of pulmonary fibrosis and develop therapeutics to halt fibrogenic progression.
0
Citation5
0
Save
5

Artificial Intelligence-rationalized balanced PPARα/γ dual agonism resets the dysregulated macrophage processes in inflammatory bowel disease

Gajanan Katkar et al.Jul 19, 2021
ABSTRACT A computational platform, the Boolean network explorer ( BoNE ), has recently been developed to infuse AI-enhanced precision into drug discovery; it enables querying and navigating invariant Boolean Implication Networks of disease maps for prioritizing high-value targets. Here we used BoNE to query an Inflammatory Bowel Disease (IBD)-map and prioritize a therapeutic strategy that involves dual agonism of two nuclear receptors, PPARα/γ. Balanced agonism of PPARα/γ was predicted to modulate macrophage processes, ameliorate colitis in network-prioritized animal models, ‘reset’ the gene expression network from disease to health, and achieve a favorable therapeutic index that tracked other FDA-approved targets. Predictions were validated using a balanced and potent PPARα/γ-dual agonist (PAR5359) in two pre-clinical murine models, i.e., Citrobacter rodentium -induced infectious colitis and DSS-induced colitis. Using a combination of selective inhibitors and agonists, we show that balanced dual agonism promotes bacterial clearance more efficiently than individual agonists, both in vivo and in vitro . PPARa is required and its agonism is sufficient to induce the pro-inflammatory cytokines and cellular ROS, which are essential for bacterial clearance and immunity, whereas PPARg-agonism blunts these responses, delays microbial clearance and induces the anti-inflammatory cytokine, IL10; balanced dual agonism achieved controlled inflammation while protecting the gut barrier and ‘reversal’ of the transcriptomic network. Furthermore, dual agonism reversed the defective bacterial clearance observed in PBMCs derived from IBD patients. These findings not only deliver a macrophage modulator for use as barrier-protective therapy in IBD, but also highlight the potential of BoNE to rationalize combination therapy.
5
Citation3
0
Save
1

GIV/Girdin, a Non-receptor Modulator for Gαi/s, Regulates Spatiotemporal Signaling during Sperm Capacitation and is Required for Male Fertility

Sequoyah Reynoso et al.May 6, 2021
SUMMARY For a sperm to successfully fertilize an egg, it must first undergo capacitation in the female reproductive tract, and later undergo acrosomal reaction (AR) upon encountering an egg surrounded by its vestment. How premature AR is avoided despite rapid surges in signaling cascades during capacitation remains unknown. Using a combination of KO mice and cell-penetrating peptides, we show that GIV (CCDC88A), a guanine nucleotide-exchange modulator (GEM) for trimeric GTPases, is highly expressed in spermatocytes and is required for male fertility. GIV is rapidly phosphoregulated on key tyrosine and serine residues in human and murine spermatozoa. These phosphomodifications enable GIV-GEM to orchestrate two distinct compartmentalized signaling programs in the sperm tail and head; in the tail, GIV enhances PI3K→ Akt signals, sperm motility and survival, whereas in the head it inhibits cAMP surge and premature AR. Furthermore, GIV transcripts are downregulated in the testis and semen of infertile men. These findings exemplify the spatiotemporally segregated signaling programs that support sperm capacitation and shed light on a hitherto unforeseen cause of infertility in men. GRAPHIC ABSTRACT HIGHLIGHTS GIV is highly expressed in spermatozoa, and is required for male fertility GIV is rapidly phosphoregulated during sperm capacitation It enhances tyrosine-based signals in sperm tail, enhances motility It suppresses cAMP in the sperm head, inhibits premature acrosome exocytosis
1

Reinstatement of CDX2 as a differentiation therapy for colorectal cancers

Saptarshi Sinha et al.Sep 17, 2023
The curative potential of differentiation therapy has been recognized in hematologic malignancies, but not in solid tumors. Using colorectal cancers (CRCs) as an example, here we outline an unbiased network-based approach to track, differentiate and selectively target cancer stem cells (CSCs). A transcriptomic network is built with the intention to identify therapeutic perturbations that can reinstate the expression of CDX2, a transcription factor whose loss identifies poorly differentiated (CSC-enriched) CRCs, and whose reinstatement is predicted to reduce the risk of death/relapse by 50%. The top candidate target, when engaged with a clinical-grade drug, predictably shifts the network, induces CDX2 and crypt differentiation and shows cytotoxicity with a surprising degree of selectivity towards CDX2-negative models (CRC cell lines, xenotransplants in mice, and patient-derived organoids; PDOs). Potential for effective pairing of therapeutic efficacy (IC50) and biomarker (CDX2-low state) is confirmed in PDOs using multivariate analyses. A 50-gene signature of therapeutic response shows that CDX2-reinstatement therapy is expected to translate into a ~50% reduction in the risk of mortality/recurrence. We conclude that CDX2-reinstatement selectively triggers differentiation and death of colorectal CSCs, and in doing so, this network-guided approach identifies a first-in-class differentiation therapy agent in solid tumors.
3

Coupling of NOD2 to GIV is Required for Bacterial Sensing

Gajanan Katkar et al.Apr 27, 2022
SUMMARY Sensing of pathogens by Nucleotide oligomerization domain (NOD)-like 2 receptor (NOD2) induces a protective inflammatory response that coordinates bacterial clearance. Polymorphisms in NOD2 impair bacterial clearance, leading to chronic gut inflammation in Crohn’s disease (CD) via mechanisms that remain incompletely understood. We identify GIV/Girdin (CCDC88A) as a NOD2-interactor that shapes bacterial sensing-and-signaling in macrophages. Myeloid-specific GIV depletion exacerbated and protracted infectious colitis and abolished the protective effect of muramyl dipeptide (MDP) in both chemical colitis and severe sepsis. In the presence of GIV, macrophages enhance anti-bacterial pathways downstream of NOD2, clear microbes rapidly and concomitantly suppress inflammation. GIV’s actions are mediated via its C-terminus, which directly binds the terminal leucine-rich repeat (LRR#10) of NOD2; binding is augmented by MDP and ATP, precedes receptor oligomerization, and is abolished by the 1007fs CD-risk variant which lacks LRR#10. Findings illuminate mechanisms that underlie protective NOD2 signaling and loss of function in the major 1007fs variant. GRAPHIC ABSTRACT In brief This work reveals a mechanism by which macrophages use their innate immune sensor, NOD2, to protect the host against overzealous inflammation during bacterial infections, and the consequences of its loss, as occurs in the most important Crohn’s disease-risk variant. HIGHLIGHTS GIV is a functional and direct interactor of the terminal LRR repeat of NOD2 Mice lacking MФ GIV develop dysbiosis, protracted ileocolitis and sepsis MDP/NOD2-dependent protective host responses require GIV CD-risk NOD2 1007fs variant lacking the terminal LRR#10 cannot bind GIV
3

TLR4 signaling and macrophage inflammatory responses are dampened by GIV/Girdin

Lee Swanson et al.Aug 30, 2020
Abstract Sensing of pathogens by Toll-like receptor 4 (TLR4) induces an inflammatory response; controlled responses confer immunity but uncontrolled responses cause harm. Here we define how a multi-modular scaffold, GIV (a.k.a Girdin) titrates such inflammatory response in macrophages. Upon challenge with either live microbes or microbe-derived lipopolysaccharides (LPS, a ligand for TLR4), macrophages with GIV mount a more tolerant (hypo-reactive) transcriptional response and suppress pro-inflammatory cytokines and signaling pathways (i.e., NFkB and CREB) downstream of TLR4 compared to their GIV-depleted counterparts. Myeloid-specific gene depletion studies confirmed that the presence of GIV ameliorates DSS-induced colitis and sepsis-induced death. The anti-inflammatory actions of GIV are mediated via its C-terminally located TIR-like BB-loop (TILL)-motif which binds the cytoplasmic TIR-modules of TLR4 in a manner that precludes receptor dimerization; the latter is a pre-requisite for pro-inflammatory signaling. Binding of GIV’s TILL motif to other TIR modules inhibits pro-inflammatory signaling via other TLRs, suggesting a convergent paradigm for fine-tuning macrophage inflammatory responses. Significance To ensure immunity, and yet limit pathology, inflammatory responses must be confined within the proverbial ‘ Goldilocks zone’. TLR4 is the prototypical sensor that orchestrates inflammatory responses through a series of well characterized downstream cascades. How TLR4 signals are confined remain incompletely understood. Using trans-scale approaches ranging from disease modeling in live animals, through cell-based interventional studies, to structure-guided biochemical studies that offer an atomic-level resolution, this study unravels the existence of a ‘brake’ within the TLR4 signaling cascade, i.e., GIV; the latter is a prototypical member of an emerging class of scaffold proteins. By showing that GIV uses conserved mechanisms to impact multi-TLR signaling, this work unravels a multi-scale point of convergence of immune signaling of broader impact beyond TLR4.