LP
Laurent Perrinet
Author with expertise in Neuronal Oscillations in Cortical Networks
Institut de Neurosciences de la Timone, Aix-Marseille University, French National Centre for Scientific Research
+ 7 more
Achievements
This user has not unlocked any achievements yet.
Key Stats
Upvotes received:
0
Publications:
6
(17% Open Access)
Cited by:
1
h-index:
22
/
i10-index:
41
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
13

Pooling in a predictive model of V1 explains functional and structural diversity across species

Angelo Franciosini et al.Oct 24, 2023
L
F
B
A
Abstract Neurons in the primary visual cortex are selective to orientation with various degrees of selectivity to the spatial phase, from high selectivity in simple cells to low selectivity in complex cells. Various computational models have suggested a possible link between the presence of phase invariant cells and the existence of cortical orientation maps in higher mammals’ V1. These models, however, do not explain the emergence of complex cells in animals that do not show orientation maps. In this study, we build a model of V1 based on a convolutional network called Sparse Deep Predictive Coding (SDPC) and show that a single computational mechanism, pooling, allows the SDPC model to account for the emergence of complex cells as well as cortical orientation maps in V1, as observed in distinct species of mammals. By using different pooling functions, our model developed complex cells in networks that exhibit orientation maps (e.g., like in carnivores and primates) or not (e.g., rodents and lagomorphs). The SDPC can therefore be viewed as a unifying framework that explains the diversity of structural and functional phenomena observed in V1. In particular, we show that orientation maps emerge naturally as the most cost-efficient structure to generate complex cells under the predictive coding principle. Significance Cortical orientation maps are among the most fascinating structures observed in higher mammals brains: In such maps, similar orientations in the input image activate neighboring cells in the cortical surface. However, the computational advantage brought by these structures remains unclear, as some species (rodents and lagomorphs) completely lack orientation maps. In this study, we introduce a computational model that links the presence of orientation maps to a class of nonlinear neurons called complex cells. In particular, we propose that the presence or absence orientation maps correspond to different strategies employed by different species to generate invariance to complex stimuli.
13
Paper
Citation1
0
Save
0

Anticipatory responses along motion trajectories in awake monkey area V1

Giacomo Benvenuti et al.May 7, 2020
+3
A
S
G
What are the neural mechanisms underlying motion integration of translating objects? Visual motion integration is generally conceived of as a feedforward, hierarchical, information processing. However, feedforward models fail to account for many contextual effects revealed using natural moving stimuli. In particular, a translating object evokes a sequence of transient feedforward responses in the primary visual cortex but also propagations of activity through horizontal and feedback pathways. We investigated how these pathways shape the representation of a translating bar in monkey V1. We show that, for long trajectories, spiking activity builds-up hundreds of milliseconds before the bar enters the neurons’ receptive fields. Using VSDI and LFP recordings guided by a phenomenological model of propagation dynamics, we demonstrate that this anticipatory response arises from the interplay between horizontal and feedback networks driving V1 neurons well ahead of their feedforward inputs. This mechanism could subtend several perceptual contextual effects observed with translating objects.Highlights
0

A dual foveal-peripheral visual processing model implements efficient saccade selection

Emmanuel Daucé et al.May 7, 2020
L
P
E
We develop a visuomotor model that implements visual search as a focal accuracy-seeking policy, with the target's position and category drawn independently from a common generative process. Consistently with the anatomical separation between the ventral versus dorsal pathways, the model is composed of two pathways, that respectively infer what to see and where to look. The \``What'' network is a classical deep learning classifier, that only processes a small region around the center of fixation, providing a \`\`foveal'' accuracy. In contrast, the \`\`Where'' network processes the full visual field in a biomimetic fashion, using a log-polar retinotopic encoding, which is preserved up to the action selection level. The foveal accuracy is used to train the \`\`Where'' network. After training, the \`\`Where'' network provides an \``accuracy map'' that serves to guide the eye toward peripheral objects. The comparison of both networks accuracies amounts to either select a saccade or to keep the eye at the center to identify the target. We test this setup on a simple task of finding a digit in a large, cluttered image. Our simulation results demonstrate the effectiveness of this approach, increasing by one order of magnitude the radius of the visual field toward which the agent can detect and recognize a target, either through a single saccade or with multiple ones. Importantly, our log-polar treatment of the visual information exploits the strong compression rate performed at the sensory level, providing ways to implement visual search in a sub-linear fashion, in contrast with mainstream computer vision.### Competing Interest StatementThe authors have declared no competing interest.
0
0
Save
0

Speed-Selectivity in Retinal Ganglion Cells is Modulated by the Complexity of the Visual Stimulus

César Ravello et al.May 7, 2020
A
M
L
C
Motion detection represents one of the critical tasks of the visual system and has motivated a large body of research. However, is remain unclear precisely why the response of retinal ganglion cells (RGCs) to simple artificial stimuli does not predict their response to complex naturalistic stimuli. To explore this topic, we use Motion Clouds (MC), which are synthetic textures that preserve properties of natural images and are merely parameterized, in particular by modulating the spatiotemporal spectrum complexity of the stimulus by adjusting the frequency bandwidths. By stimulating the retina of the diurnal rodent, Octodon degus with MC we show that the RGCs respond to increasingly complex stimuli by narrowing their adjustment curves in response to movement. At the level of the population, complex stimuli produce a sparser code while preserving movement information; therefore, the stimuli are encoded more efficiently. Interestingly, these properties were observed throughout different populations of RGCs. Thus, our results reveal that the response at the level of RGCs is modulated by the naturalness of the stimulus - in particular for motion - which suggests that the tuning to the statistics of natural images already emerges at the level of the retina.
0

Cortical suppressive waves shape the representation of long-range apparent motion

Sandrine Chemla et al.May 7, 2020
+4
M
A
S
The "apparent motion" illusion is evoked when stationary stimuli are successively flashed in spatially separated positions. It depends on the precise spatial and temporal separations of the stimuli. For large spatiotemporal separation, the long-range apparent motion (lrAM), it remains unclear how the visual system computes unambiguous motion signals. Here we investigated whether intracortical interactions within retinotopic maps could shape a global motion representation at the level of V1 population in response to a lrAM. In fixating monkeys, voltage-sensitive dye imaging revealed the emergence of a spatio-temporal representation of the motion trajectory at the scale of V1 population activity, shaped by systematic backward suppressive waves. We show that these waves are the expected emergent property of a recurrent gain control fed by the horizontal intra-cortical network. Such non-linearities explain away ambiguous correspondence problems of the stimulus along the motion path, preformating V1 population response for an optimal read-out by downstream areas.
0

Humans adapt their anticipatory eye movements to the volatility of visual motion properties

Chloé Pasturel et al.May 7, 2020
L
A
C
Animal behavior constantly adapts to changes, for example when the statistical properties of the environment change unexpectedly. For an agent that interacts with this volatile setting, it is important to react accurately and as quickly as possible. It has already been shown that when a random sequence of motion ramps of a visual target is biased to one direction (e.g. right or left), human observers adapt their eye movements to accurately anticipate the target's expected direction. Here, we prove that this ability extends to a volatile environment where the probability bias could change at random switching times. In addition, we also recorded the explicit prediction of the next outcome as reported by observers using a rating scale. Both results were compared to the estimates of a probabilistic agent that is optimal in relation to the assumed generative model. Compared to the classical leaky integrator model, we found a better match between our probabilistic agent and the behavioral responses, both for the anticipatory eye movements and the explicit task. Furthermore, by controlling the level of preference between exploitation and exploration in the model, we were able to fit for each individual's experimental dataset the most likely level of volatility and analyze inter-individual variability across participants. These results prove that in such an unstable environment, human observers can still represent an internal belief about the environmental contingencies, and use this representation both for sensory-motor control and for explicit judgments. This work offers an innovative approach to more generically test the diversity of human cognitive abilities in uncertain and dynamic environments.### Competing Interest StatementThe authors have declared no competing interest.