SC
Stacey Choi
Author with expertise in Neonatal Lung Development and Respiratory Morbidity
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
3
(67% Open Access)
Cited by:
0
h-index:
27
/
i10-index:
44
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
25

Progenitor identification and SARS-CoV-2 infection in long-term human distal lung organoid cultures

Ameen Salahudeen et al.Jul 27, 2020
ABSTRACT The distal lung contains terminal bronchioles and alveoli that facilitate gas exchange and is affected by disorders including interstitial lung disease, cancer, and SARS-CoV-2-associated COVID-19 pneumonia. Investigations of these localized pathologies have been hindered by a lack of 3D in vitro human distal lung culture systems. Further, human distal lung stem cell identification has been impaired by quiescence, anatomic divergence from mouse and lack of lineage tracing and clonogenic culture. Here, we developed robust feeder-free, chemically-defined culture of distal human lung progenitors as organoids derived clonally from single adult human alveolar epithelial type II (AT2) or KRT5 + basal cells. AT2 organoids exhibited AT1 transdifferentiation potential, while basal cell organoids progressively developed lumens lined by differentiated club and ciliated cells. Organoids consisting solely of club cells were not observed. Upon single cell RNA-sequencing (scRNA-seq), alveolar organoids were composed of proliferative AT2 cells; however, basal organoid KRT5 + cells contained a distinct ITGA6 + ITGB4 + mitotic population whose proliferation segregated to a TNFRSF12A hi subfraction. Clonogenic organoid growth was markedly enriched within the TNFRSF12A hi subset of FACS-purified ITGA6 + ITGB4 + basal cells from human lung or derivative organoids. In vivo , TNFRSF12A + cells comprised ~10% of KRT5 + basal cells and resided in clusters within terminal bronchioles. To model COVID-19 distal lung disease, we everted the polarity of basal and alveolar organoids to rapidly relocate differentiated club and ciliated cells from the organoid lumen to the exterior surface, thus displaying the SARS-CoV-2 receptor ACE2 on the outwardly-facing apical aspect. Accordingly, basal and AT2 “apical-out” organoids were infected by SARS-CoV-2, identifying club cells as a novel target population. This long-term, feeder-free organoid culture of human distal lung alveolar and basal stem cells, coupled with single cell analysis, identifies unsuspected basal cell functional heterogeneity and exemplifies progenitor identification within a slowly proliferating human tissue. Further, our studies establish a facile in vitro organoid model for human distal lung infectious diseases including COVID-19-associated pneumonia.
0

Highly Efficient Repair of the ΔF508 Mutation in Airway Stem Cells of Cystic Fibrosis Patients with Functional Rescue of the Differentiated Epithelia

Sriram Vaidyanathan et al.Feb 26, 2019
Cystic fibrosis (CF) is a monogenic autosomal recessive disorder caused by mutations in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Cl- channel. CF results in multiorgan dysfunction and ultimately mortality from respiratory sequelae. Although pharmacologic approaches have demonstrated efficacy in reducing symptoms and respiratory decline, a curative treatment modality remains elusive. Gene therapy, a promising curative strategy, has been limited due to poor correction efficiencies both in vitro and in vivo. Here, we use Cas9 and adeno-associated virus 6 (AAV6) to correct the ΔF508 mutation (found in ~70% of CF alleles and ~90% of CF patients in North America) in upper airway basal stem cells (UABCs) obtained from CF and non-CF patients undergoing functional endoscopic sinus surgery (FESS). In UABCs from homozygous (ΔF508/ΔF508) and compound heterozygous (ΔF508/Other) CF patients, we achieved 28 ± 5 % and 42 ± 15% correction, respectively. In homozygous human bronchial epithelial cells (HBECs), we achieved 41 ± 4 % correction. Upon differentiation in air-liquid interface (ALI), cultures of corrected CF cells displayed partial restoration of CFTRinh-172 sensitive Cl- currents relative to non-CF controls: 31 ± 5 % in UABCs and 51 ± 3 % in HBECs (both from subjects homozygous for ΔF508 CFTR). Finally, gene edited cells embedded successfully and retained expression of cytokeratin 5 (KRT5), a basal cell marker, on a FDA-approved porcine small intestinal submucosal (pSIS) membrane previously shown to improve re-mucosalization after FESS. In summary, we present an efficient, feeder-free, selection-free and clinically compatible approach to generate cell-based therapies for CF from autologous airway stem cells. This approach represents a first step towards developing patient-specific autologous airway stem cell transplant as a curative treatment for CF.
0

Proteomic analysis identifies the E3 ubiquitin ligase Pdzrn3 as a regulatory target of Wnt5a-Ror signaling

Sara Snavely et al.Jun 23, 2020
Abstract Wnt5a-Ror signaling is a conserved pathway that regulates morphogenetic processes during vertebrate development, but its downstream signaling events remain poorly understood. Through a large-scale proteomic screen in mouse embryonic fibroblasts, we identified the E3 ubiquitin ligase Pdzrn3 as a regulatory target of the Wnt5a-Ror pathway. Upon pathway activation, Pdzrn3 is degraded in a β-catenin-independent, ubiquitin-proteasome system-dependent manner. We developed a flow cytometry-based reporter to monitor Pdzrn3 abundance and delineated a signaling cascade involving Frizzled, Dishevelled, CK1, and GSK3 that regulates Pdzrn3 stability. Epistatically, Pdzrn3 is regulated independently of Kif26b, another Wnt5a-Ror effector. Wnt5a-dependent degradation of Pdzrn3 requires phosphorylation of three conserved amino acids within its C-terminal LNX3H domain, which acts as a bona fide Wnt5a-responsive element. Importantly, this phospho-dependent degradation is essential for Wnt5a-Ror modulation of cell migration. Collectively, this work establishes a new Wnt5a-Ror cell morphogenetic cascade involving Pdzrn3 phosphorylation and degradation.