AJ
Anne Jacobi
Author with expertise in Molecular Mechanisms of Retinal Degeneration and Regeneration
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
5
(80% Open Access)
Cited by:
489
h-index:
15
/
i10-index:
18
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Single-Cell Profiles of Retinal Ganglion Cells Differing in Resilience to Injury Reveal Neuroprotective Genes

Nicholas Tran et al.Nov 26, 2019
+14
I
K
N
Neuronal types in the central nervous system differ dramatically in their resilience to injury or other insults. Here we studied the selective resilience of mouse retinal ganglion cells (RGCs) following optic nerve crush (ONC), which severs their axons and leads to death of ∼80% of RGCs within 2 weeks. To identify expression programs associated with differential resilience, we first used single-cell RNA-seq (scRNA-seq) to generate a comprehensive molecular atlas of 46 RGC types in adult retina. We then tracked their survival after ONC; characterized transcriptomic, physiological, and morphological changes that preceded degeneration; and identified genes selectively expressed by each type. Finally, using loss- and gain-of-function assays in vivo, we showed that manipulating some of these genes improved neuronal survival and axon regeneration following ONC. This study provides a systematic framework for parsing type-specific responses to injury and demonstrates that differential gene expression can be used to reveal molecular targets for intervention.
0
Citation467
0
Save
83

Unified classification of mouse retinal ganglion cells using function, morphology, and gene expression

Jillian Goetz et al.Jun 11, 2021
+8
Z
J
J
Abstract Classification and characterization of neuronal types are critical for understanding their function and dysfunction. Neuronal classification schemes typically rely on measurements of electrophysiological, morphological, and molecular features, but aligning such datasets has been challenging. Here, we present a unified classification of mouse retinal ganglion cells (RGCs), the sole retinal output neurons. We used visually-evoked responses to classify 1859 mouse RGCs into 42 types. We also obtained morphological or transcriptomic data from subsets and used these measurements to align the functional classification to publicly available morphological and transcriptomic data sets. We created an online database that allows users to browse or download the data and to classify RGCs from their light responses using a machine learning algorithm. This work provides a resource for studies of RGCs, their upstream circuits in the retina, and their projections in the brain, and establishes a framework for future efforts in neuronal classification and open data distribution.
83
Citation19
0
Save
44

Temporal single cell atlas of non-neuronal retinal cells reveals dynamic, coordinated multicellular responses to central nervous system injury

Inbal Benhar et al.Jul 10, 2022
+10
W
J
I
Abstract Non-neuronal cells play key roles in the complex cellular interplay that follows central nervous system (CNS) insult. To understand this interplay at a tissue level, we generated a single-cell atlas of immune, glial and retinal pigment epithelial cells from adult mouse retina before and at multiple time points after axonal transection (optic nerve crush; ONC), identifying rare and undescribed subsets, and delineating changes in cell composition, expression programs, and interactions. Computational analysis charted an inflammatory cascade after injury with three phases. The early phase consisted of reactivation of retinal macroglia and microglia, providing chemotactic signals for immune infiltration, concurrent with infiltration of CCR2 + monocytes from the circulation. In the second phase, these differentiated to macrophage subsets resembling resident border-associated macrophages. In parallel, a multicellular interferon program, likely driven by microglia-derived type-I interferon, was synchronously activated across resident glia, expanding beyond rare interferon-responding subsets of glia unexpectedly present in the naïve retina. Our findings provide insights regarding post-injury CNS tissue dynamics and a framework to decipher cellular circuitry, spatial relationships and molecular interactions following tissue injury.
44
Citation2
0
Save
6

Core Transcription Programs Controlling Injury-Induced Neurodegeneration of Retinal Ganglion Cells

Feng Tian et al.Jan 22, 2022
+21
M
Q
F
SUMMARY Neurodegenerative diseases are characterized by neuronal death and regenerative failure. However, gene regulatory programs governing how initial neuronal injuries lead to neuronal death remain poorly understood. In adult mice, optic nerve crush (ONC) injury, which severs all axons of retinal ganglion cells (RGCs), results in massive death of axotomized RGCs and regenerative failure of survivors. We performed an in vivo CRISPR/Cas9-based genome-wide screen of 1893 transcription factors (TFs) to seek repressors of RGC survival and axon regeneration following ONC. In parallel, we profiled the epigenetic and transcriptional landscapes of injured RGCs by ATAC-seq and RNA-seq to identify critical injury responsive TFs and their targets. Remarkably, these independent analyses converged on a set of four ATF/CEBP transcription factors – ATF3, ATF4, C/EBPγ and CHOP (Ddit3) – as critical regulators of survival. Further studies indicate that these TFs contribute to two pro-death transcriptional programs: ATF3/CHOP preferentially regulate pathways activated by cytokines and innate immunity, whereas ATF4/C/EBPγ regulate pathways engaged by intrinsic neuronal stressors. Manipulation of these TFs also protects RGCs in an experimental model of glaucoma, a prevalent disease in which RGCs die. Together, our results reveal core transcription programs that transform an initial axonal insult into a degenerative result and suggest novel strategies for treating neurodegenerative diseases.
6
Citation1
0
Save
0

Single-cell profiles of retinal neurons differing in resilience to injury reveal neuroprotective genes

Nicholas Tran et al.Jul 23, 2019
+14
I
K
N
Neuronal types in the central nervous system differ dramatically in their resilience to injury or insults. Here we studied the selective resilience of mouse retinal ganglion cells (RGCs) following optic nerve crush (ONC), which severs their axons and leads to death of ~80% of RGCs within 2 weeks. To identify expression programs associated with differential resilience, we first used single-cell RNA-seq (scRNA-seq) to generate a comprehensive molecular atlas of 46 RGC types in adult retina. We then tracked their survival after ONC, characterized transcriptomic, physiological, and morphological changes that preceded degeneration, and identified genes selectively expressed by each type. Finally, using loss- and gain-of-function assays in vivo, we showed that manipulating some of these genes improved neuronal survival and axon regeneration following ONC. This study provides a systematic framework for parsing type-specific responses to injury, and demonstrates that differential gene expression can be used to reveal molecular targets for intervention.