BS
Bo Shopsin
Author with expertise in Diversity and Function of Gut Microbiome
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
5
(80% Open Access)
Cited by:
18
h-index:
30
/
i10-index:
59
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
129

Gut microbiome dysbiosis during COVID-19 is associated with increased risk for bacteremia and microbial translocation

Mericien Venzon et al.Jul 15, 2021
The microbial populations in the gut microbiome have recently been associated with COVID-19 disease severity. However, a causal impact of the gut microbiome on COVID-19 patient health has not been established. Here we provide evidence that gut microbiome dysbiosis is associated with translocation of bacteria into the blood during COVID-19, causing life-threatening secondary infections. Antibiotics and other treatments during COVID-19 can potentially confound microbiome associations. We therefore first demonstrate in a mouse model that SARS-CoV-2 infection can induce gut microbiome dysbiosis, which correlated with alterations to Paneth cells and goblet cells, and markers of barrier permeability. Comparison with stool samples collected from 96 COVID-19 patients at two different clinical sites also revealed substantial gut microbiome dysbiosis, paralleling our observations in the animal model. Specifically, we observed blooms of opportunistic pathogenic bacterial genera known to include antimicrobial-resistant species in hospitalized COVID-19 patients. Analysis of blood culture results testing for secondary microbial bloodstream infections with paired microbiome data obtained from these patients indicates that bacteria may translocate from the gut into the systemic circulation of COVID-19 patients. These results are consistent with a direct role for gut microbiome dysbiosis in enabling dangerous secondary infections during COVID-19.
129
Citation14
0
Save
274

Transcription-replication interactions reveal principles of bacterial genome regulation

Andrew Pountain et al.Oct 23, 2022
Abstract Organisms determine the transcription rates of thousands of genes through a few modes of regulation that recur across the genome. These modes interact with a changing cellular environment to yield highly dynamic expression patterns. In bacteria, the relationship between a gene’s regulatory architecture and its expression is well understood for individual model gene circuits. However, a broader perspective of these dynamics at the genome-scale is lacking, in part because bacterial transcriptomics have hitherto captured only a static snapshot of expression averaged across millions of cells. As a result, the full diversity of gene expression dynamics and their relation to regulatory architecture remains unknown. Here we present a novel genome-wide classification of regulatory modes based on each gene’s transcriptional response to its own replication, which we term the Transcription-Replication Interaction Profile (TRIP). We found that the response to the universal perturbation of chromosomal replication integrates biological regulatory factors with biophysical molecular events on the chromosome to reveal a gene’s local regulatory context. While the TRIPs of many genes conform to a gene dosage-dependent pattern, others diverge in distinct ways, including altered timing or amplitude of expression, and this is shaped by factors such as intra-operon position, repression state, or presence on mobile genetic elements. Our transcriptome analysis also simultaneously captures global properties, such as the rates of replication and transcription, as well as the nestedness of replication patterns. This work challenges previous notions of the drivers of expression heterogeneity within a population of cells, and unearths a previously unseen world of gene transcription dynamics.
274
Citation4
0
Save
0

Microbiota and metabolic adaptation shapeStaphylococcus aureusvirulence and antimicrobial resistance during intestinal colonization

Chunyi Zhou et al.May 11, 2024
ABSTRACT Depletion of microbiota increases susceptibility to gastrointestinal colonization and subsequent infection by opportunistic pathogens such as methicillin-resistant Staphylococcus aureus (MRSA). How the absence of gut microbiota impacts the evolution of MRSA is unknown. The present report used germ-free mice to investigate the evolutionary dynamics of MRSA in the absence of gut microbiota. Through genomic analyses and competition assays, we found that MRSA adapts to the microbiota-free gut through sequential genetic mutations and structural changes that enhance fitness. Initially, these adaptations increase carbohydrate transport; subsequently, evolutionary pathways largely diverge to enhance either arginine metabolism or cell wall biosynthesis. Increased fitness in arginine pathway mutants depended on arginine catabolic genes, especially nos and arcC , which promote microaerobic respiration and ATP generation, respectively. Thus, arginine adaptation likely improves redox balance and energy production in the oxygen-limited gut environment. Findings were supported by human gut metagenomic analyses, which suggest the influence of arginine metabolism on colonization. Surprisingly, these adaptive genetic changes often reduced MRSA’s antimicrobial resistance and virulence. Furthermore, resistance mutation, typically associated with decreased virulence, also reduced colonization fitness, indicating evolutionary trade-offs among these traits. The presence of normal microbiota inhibited these adaptations, preserving MRSA’s wild-type characteristics that effectively balance virulence, resistance, and colonization fitness. The results highlight the protective role of gut microbiota in preserving a balance of key MRSA traits for long-term ecological success in commensal populations, underscoring the potential consequences on MRSA’s survival and fitness during and after host hospitalization and antimicrobial treatment. Importance The fitness of MRSA depends on its ability to colonize. A key, underappreciated observation is that gut colonization frequently serves as the site for MRSA infections, especially among vulnerable groups such as children and hospitalized adults. By evolving MRSA strains in germ-free mice, we identify molecular mechanisms underlying how MRSA exploits a depletion in host microbiota to enhance gut colonization fitness. This work points to bacterial colonization factors that may be targetable. Our findings indicate that adaptive changes in MRSA often reduce its antimicrobial resistance and virulence, and are suppressed by the presence of native commensal bacteria. This work helps explain the ecology of pathoadaptive variants that thrive in hospital settings but falter under colonization conditions in healthy hosts. Additionally, it illustrates the potential adverse effects of prolonged, broad-spectrum empirical antimicrobial therapy and adds a new type of weight to calls for microbiota transplantation to reduce colonization by antimicrobial-resistant pathogens.
23

ACE2-containing defensosomes serve as decoys to inhibit SARS-CoV-2 infection

Krystal Ching et al.Dec 20, 2021
Extracellular vesicles of endosomal origin, exosomes, mediate intercellular communication by transporting substrates with a variety of functions related to tissue homeostasis and disease. Their diagnostic and therapeutic potential has been recognized for diseases such as cancer in which signaling defects are prominent. However, it is unclear to what extent exosomes and their cargo inform the progression of infectious diseases. We recently defined a subset of exosomes termed defensosomes that are mobilized during bacterial infection in a manner dependent on autophagy proteins. Through incorporating protein receptors on their surface, defensosomes mediated host defense by binding and inhibiting pore-forming toxins secreted by bacterial pathogens. Given this capacity to serve as decoys that interfere with surface protein interactions, we investigated the role of defensosomes during infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent of COVID-19. Consistent with a protective function, exosomes containing high levels of the viral receptor ACE2 in bronchioalveolar lavage fluid from critically ill COVID-19 patients was associated with reduced ICU and hospitalization times. We found ACE2+ exosomes were induced by SARS-CoV-2 infection and activation of viral sensors in cell culture, which required the autophagy protein ATG16L1, defining these as defensosomes. We further demonstrate that ACE2+ defensosomes directly bind and block viral entry. These findings suggest that defensosomes may contribute to the antiviral response against SARS-CoV-2 and expand our knowledge on the regulation and effects of extracellular vesicles during infection.