A new version of ResearchHub is available.Try it now
Healthy Research Rewards
ResearchHub is incentivizing healthy research behavior. At this time, first authors of open access papers are eligible for rewards. Visit the publications tab to view your eligible publications.
Got it
IV
Inge Verstraeten
Author with expertise in Plant Nutrient Uptake and Signaling Pathways
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
4
(75% Open Access)
Cited by:
27
h-index:
18
/
i10-index:
20
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
62

Rapid auxin-mediated phosphorylation of Myosin regulates trafficking and polarity in Arabidopsis

Huibin Han et al.Apr 13, 2021
Abstract The signaling molecule auxin controls plant development through a well-known transcriptional mechanism that regulates many genes. However, auxin also triggers cellular responses within seconds or minutes, and mechanisms mediating such fast responses have remained elusive. Here, we identified an ultrafast auxin-mediated protein phosphorylation response in Arabidopsis roots that is largely independent of the canonical TIR1/AFB receptors. Among targets of this novel response are Myosin XI and its adaptor protein MadB2. We show that their auxin-mediated phosphorylation regulates trafficking and polar, subcellular distribution of PIN auxin transporters. This phosphorylation-based auxin signaling module is indispensable during developmental processes that rely on auxin-mediated PIN repolarization, such as termination of shoot gravitropic bending or vasculature formation and regeneration. Hence, we identified a fast, non-canonical auxin response targeting multiple cellular processes and revealed auxin-triggered phosphorylation of a myosin complex as the mechanism for feedback regulation of directional auxin transport, a central component of auxin canalization, which underlies self-organizing plant development.
62
Citation20
0
Save
0

Temperature-induced changes in wheat phosphoproteome reveal temperature-regulated interconversion of phosphoforms

Lam Vu et al.Feb 6, 2018
Wheat (Triticum ssp.) is one of the most important human food sources. However, this crop is very sensitive to temperature changes. Specifically, processes during wheat leaf, flower and seed development and photosynthesis, which all contribute to the yield of this crop, are affected by high temperature. While this has to some extent been investigated on physiological, developmental and molecular levels, very little is known about early signalling events associated with an increase in temperature. Phosphorylation-mediated signalling mechanisms, which are quick and dynamic, are associated with plant growth and development, also under abiotic stress conditions. Therefore, we probed the impact of a short-term increase in temperature on the wheat leaf and spikelet phosphoproteome. The resulting data set provides the scientific community with a first large-scale plant phosphoproteome under the control of higher ambient temperature, which will be valuable for future studies. Our analyses also revealed a core set of common proteins between leaf and spikelet, suggesting some level of conserved regulatory mechanisms. Furthermore, we observed temperature-regulated interconversion of phosphoforms, which likely impacts protein activity.