Summary Regulation of chromatin accessibility determines the transcription activities of genes, which endow the host with function-specific gene expression patterns. It remains unclear how chromatin accessibility is specifically directed, particularly, during host defense against viral infection. We previously reported that the nuclear matrix protein SAFA surveils viral RNA and regulates antiviral immune genes expression. However, how SAFA regulates the expression and what determines the specificity of antiviral immune genes remains unknown. Here, we identified that the depletion of SAFA specifically decreased the chromatin accessibility, activation and expression of virus induced genes in a genome-wide scale after VSV infection. SAFA exclusively bound with antiviral related RNAs, which mediated the specific opening of the according chromatin and robust transcription of these genes. Knockdown of these associated RNAs dampened the accessibility of corresponding genes in an extranuclear signaling pathway dependent manner. Moreover, VSV infection cleaved SAFA protein at the C-terminus which deprived its RNA binding ability for immune evasion. Thus, our results demonstrated that SAFA and the interacting RNA products during viral infection collaborate and remodel chromatin accessibility to facilitate antiviral innate immune response.