AA
Anushri Arora
Author with expertise in Genomic Landscape of Cancer and Mutational Signatures
New York Genome Center, Cornell University, Narsee Monjee Institute of Management Studies
+ 1 more
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
3
(67% Open Access)
Cited by:
14
h-index:
3
/
i10-index:
1
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
210

Machine learning guided signal enrichment for ultrasensitive plasma tumor burden monitoring

Adam Widman et al.Oct 24, 2023
+39
N
M
A
ABSTRACT In solid tumor oncology, circulating tumor DNA (ctDNA) is poised to transform care through accurate assessment of minimal residual disease (MRD) and therapeutic response monitoring. To overcome the sparsity of ctDNA fragments in low tumor fraction (TF) settings and increase MRD sensitivity, we previously leveraged genome-wide mutational integration through plasma whole genome sequencing (WGS). We now introduce MRD-EDGE, a composite machine learning-guided WGS ctDNA single nucleotide variant (SNV) and copy number variant (CNV) detection platform designed to increase signal enrichment. MRD-EDGE uses deep learning and a ctDNA-specific feature space to increase SNV signal to noise enrichment in WGS by 300X compared to our previous noise suppression platform MRDetect. MRD-EDGE also reduces the degree of aneuploidy needed for ultrasensitive CNV detection through WGS from 1Gb to 200Mb, thereby expanding its applicability to a wider range of solid tumors. We harness the improved performance to track changes in tumor burden in response to neoadjuvant immunotherapy in non-small cell lung cancer and demonstrate ctDNA shedding in precancerous colorectal adenomas. Finally, the radical signal to noise enrichment in MRD-EDGE enables de novo mutation calling in melanoma without matched tumor, yielding clinically informative TF monitoring for patients on immune checkpoint inhibition.
1

Ultrasensitive plasma-based monitoring of tumor burden using machine-learning-guided signal enrichment

Adam Widman et al.Jun 14, 2024
+58
A
M
A
138

Whole genome error-corrected sequencing for sensitive circulating tumor DNA cancer monitoring

Alexandre Cheng et al.Oct 24, 2023
+32
A
A
A
ABSTRACT Circulating cell-free DNA (ccfDNA) sequencing for low-burden cancer monitoring is limited by sparsity of circulating tumor DNA (ctDNA), the abundance of genomic material within a plasma sample, and pre-analytical error rates due to library preparation, and sequencing errors. Sequencing costs have historically favored the development of deep targeted sequencing approaches for overcoming sparsity in ctDNA detection, but these techniques are limited by the abundance of ccfDNA in samples, which imposes a ceiling on the maximal depth of coverage in targeted panels. Whole genome sequencing (WGS) is an orthogonal approach to ctDNA detection that can overcome the low abundance of ccfDNA by supplanting sequencing depth with breadth, integrating signal across the entire tumor mutation landscape. However, the higher cost of WGS limits the practical depth of coverage and hinders broad adoption. Lower sequencing costs may thus allow for enhanced ctDNA cancer monitoring via WGS. We therefore applied emerging lower-cost WGS (Ultima Genomics, 1USD/Gb) to plasma samples at ∼120x coverage. Copy number and single nucleotide variation profiles were comparable between matched Ultima and Illumina datasets, and the deeper WGS coverage enabled ctDNA detection at the parts per million range. We further harnessed these lower sequencing costs to implement duplex error-corrected sequencing at the scale of the entire genome, demonstrating a ∼1,500x decrease in errors in the plasma of patient-derived xenograft mouse models, and error rates of ∼10 −7 in patient plasma samples. We leveraged this highly de-noised plasma WGS to undertake cancer monitoring in the more challenging context of resectable melanoma without matched tumor sequencing. In this context, duplex-corrected WGS allowed us to harness known mutational signature patterns for disease monitoring without matched tumors, paving the way for de novo cancer monitoring.
138
Citation1
0
Save