Abstract Recent studies have identified key genes in Epichloë festucae that control the symbiotic interaction of this filamentous fungus with its grass host. Here we report on the identification of specific fungal genes that determine its ability to infect and colonize the host. Deletion of setB , which encodes a homolog of the H3K36 histone methyltransferase Set2/KMT3, specifically reduced histone H3K36 trimethylation and led to severe defects in colony growth and hyphal development. The E. festucae Δ clrD mutant, which lacks the gene encoding the homolog of the H3K9 methyltransferase KMT1, displays similar developmental defects. Both mutants are completely defective in their ability to infect the host grass, and mutational studies of key residues in the catalytic SET domains from these proteins show that these phenotypes are dependent on the methyltransferase activities of SetB and ClrD. A comparison of the differences in the host transcriptome between seedlings inoculated with wild-type versus mutants suggests that the inability of these mutants to infect the host was not due to an aberrant host defense response. Co-inoculation of either Δ setB or Δ clrD with the wild-type strain enables these mutants to colonize the host. However, successful colonization by the mutants resulted in death or stunting of the host plant. Transcriptome analysis at the early infection stage identified four fungal candidate genes, three of which encode small-secreted proteins, that are differentially regulated in these mutants compared to wild-type. Deletion of crbA , which encodes a putative carbohydrate binding protein, resulted in significantly reduced host infection rates by E. festucae . Author Summary The filamentous fungus Epichloë festucae is an endophyte that forms highly regulated symbiotic interactions with the perennial ryegrass. Proper maintenance of such interactions is known to involve several signalling pathways, but much less is understood about the infection capability of this fungus in the host. In this study, we uncovered two epigenetic marks and their respective histone methyltransferases that are required for E. festucae to infect perennial ryegrass. Null mutants of the histone H3 lysine 9 and lysine 36 methyltransferases are completely defective in colonizing the host intercellular space, and these defects are dependent on the methyltransferase activities of these enzymes. Importantly, we observed no evidence for increased host defense response to these mutants that can account for their non-infection. Rather, these infection defects can be rescued by the wild-type strain in co-inoculation experiments, suggesting that failure of the mutants to infect is due to altered expression of genes encoding infection factors that are under the control of the above epigenetic marks that can be supplied by the wild-type strain. Among genes differentially expressed in the mutants at the early infection stage is a putative small-secreted protein with a carbohydrate binding function, which deletion in E. festucae severely reduced infection efficiency.