JH
Jingzhou Hao
Author with expertise in Protein Structure Prediction and Analysis
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
4
(100% Open Access)
Cited by:
384
h-index:
4
/
i10-index:
4
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

De novo protein design by deep network hallucination

Ivan Anishchenko et al.Dec 1, 2021
There has been considerable recent progress in protein structure prediction using deep neural networks to predict inter-residue distances from amino acid sequences1–3. Here we investigate whether the information captured by such networks is sufficiently rich to generate new folded proteins with sequences unrelated to those of the naturally occurring proteins used in training the models. We generate random amino acid sequences, and input them into the trRosetta structure prediction network to predict starting residue–residue distance maps, which, as expected, are quite featureless. We then carry out Monte Carlo sampling in amino acid sequence space, optimizing the contrast (Kullback–Leibler divergence) between the inter-residue distance distributions predicted by the network and background distributions averaged over all proteins. Optimization from different random starting points resulted in novel proteins spanning a wide range of sequences and predicted structures. We obtained synthetic genes encoding 129 of the network-‘hallucinated’ sequences, and expressed and purified the proteins in Escherichia coli; 27 of the proteins yielded monodisperse species with circular dichroism spectra consistent with the hallucinated structures. We determined the three-dimensional structures of three of the hallucinated proteins, two by X-ray crystallography and one by NMR, and these closely matched the hallucinated models. Thus, deep networks trained to predict native protein structures from their sequences can be inverted to design new proteins, and such networks and methods should contribute alongside traditional physics-based models to the de novo design of proteins with new functions. The trRosetta neural network was used to iteratively optimise model proteins from random 100-amino-acid sequences, resulting in ‘hallucinated’ proteins, which when expressed in bacteria closely resembled the model structures.
0
Citation371
0
Save
9

Structure determination of protein-peptide complexes from NMR chemical shift data using MELD

Arup Mondal et al.Jan 2, 2022
ABSTRACT Intrinsically disordered regions of proteins often mediate important protein-protein interactions. However, the folding upon binding nature of many polypeptide-protein interactions limits the ability of modeling tools to predict structures of such complexes. To address this problem, we have taken a tandem approach combining NMR chemical shift data and molecular simulations to determine structures of peptide-protein complexes. Here, we demonstrate this approach for polypeptide complexes formed with the extraterminal (ET) domain of bromo and extraterminal domain (BET) proteins, which exhibit a high degree of binding plasticity. This system is particularly challenging as the binding process includes allosteric changes across the ET receptor upon binding, and the polypeptide binding partners can form different conformations (e.g., helices and hairpins) in the complex. In a blind study, the new approach successfully modeled bound-state conformations and binding poses, using only backbone chemical shift data, in excellent agreement with experimentally-determined structures. The approach also predicts relative binding affinities of different peptides. This hybrid MELD-NMR approach provides a powerful new tool for structural analysis of protein-polypeptide complexes in the low NMR information content regime, which can be used successfully for flexible systems where one polypeptide binding partner folds upon complex formation.
9
Citation10
0
Save
0

HLTF disrupts Cas9-DNA post-cleavage complexes to allow DNA break processing

Giordano Reginato et al.Jul 10, 2024
Abstract The outcome of CRISPR-Cas-mediated genome modifications is dependent on DNA double-strand break (DSB) processing and repair pathway choice. Homology-directed repair (HDR) of protein-blocked DSBs requires DNA end resection that is initiated by the endonuclease activity of the MRE11 complex. Using reconstituted reactions, we show that Cas9 breaks are unexpectedly not directly resectable by the MRE11 complex. In contrast, breaks catalyzed by Cas12a are readily processed. Cas9, unlike Cas12a, bridges the broken ends, preventing DSB detection and processing by MRE11. We demonstrate that Cas9 must be dislocated after DNA cleavage to allow DNA end resection and repair. Using single molecule and bulk biochemical assays, we next find that the HLTF translocase directly removes Cas9 from broken ends, which allows DSB processing by DNA end resection or non-homologous end-joining machineries. Mechanistically, the activity of HLTF requires its HIRAN domain and the release of the 3′-end generated by the cleavage of the non-target DNA strand by the Cas9 RuvC domain. Consequently, HLTF removes the H840A but not the D10A Cas9 nickase. The removal of Cas9 H840A by HLTF explains the different cellular impact of the two Cas9 nickase variants in human cells, with potential implications for gene editing.
0
Citation3
0
Save
0

A common binding motif in the ET domain of BRD3 forms polymorphic structural interfaces with host and viral proteins

Sriram Aiyer et al.Sep 21, 2020
Summary The extra-terminal (ET) domain of BRD3 is conserved among BET proteins (BRD2, BRD3, BRD4), interacting with multiple host and viral protein-protein networks. Solution NMR structures of complexes formed between BRD3-ET domain with either the 79-residue murine leukemia virus integrase (IN) C-terminal domain (IN 329-408 ), or its 22-residue IN tail peptide (TP) (IN 386-407 ) alone, reveal similar intermolecular three-stranded β-sheet formation. 15 N relaxation studies reveal a 10-residue linker region (IN 379-388 ) tethering the SH3 domain (IN 329-378 ) to the ET-binding motif (IN 389-405 )-ET complex. This linker has restricted flexibility, impacting its potential range of orientations in the IN - nucleosome complex. The complex of the ET-binding peptide of host NSD3 protein (NSD3 148-184 ) and BRD3-ET domain includes a similar three-stranded β-sheet interaction, but the orientation of the β−hairpin is flipped compared to the two IN : ET complexes. These studies expand our understanding of molecular recognition polymorphism in complexes of ET-binding motifs with viral and host proteins. Highlights The BRD3 ET domain binds to key peptide motifs of diverse host and viral proteins. These complexes reveal conformational plasticity in molecular recognition. NMR studies demonstrate restricted interdomain motion in the IN CTD / ET complex. A cost-effective approach is described for producing isotopically-labeled peptides. Etoc Blurb We address structurally how the MLV Integrase (IN) usurps the host function of the BET protein through comparative studies of the IN : Brd3 ET complex with that of the host NSD3. MLV integration and thus its pathogenesis is driven through protein interactions of the IN : BET family.