DD
Daniël Damme
Author with expertise in Mechanisms of Intracellular Membrane Trafficking
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
14
(79% Open Access)
Cited by:
22
h-index:
10
/
i10-index:
11
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
86

Biomolecular condensation orchestrates clathrin-mediated endocytosis in plants

Jonathan Dragwidge et al.Mar 17, 2022
+18
L
Y
J
Summary Clathrin-mediated endocytosis (CME) is an essential cellular internalisation pathway involving the dynamic assembly of clathrin and accessory proteins to form membrane-bound vesicles. In plants, the evolutionarily ancient TSET/TPLATE complex (TPC) plays an essential, but not well-defined role in CME. Here, we show that two highly disordered TPC subunits, AtEH1 and AtEH2 function as scaffolds to drive biomolecular condensation of the complex. These condensates specifically nucleate on the plasma membrane through interactions with anionic phospholipids, and facilitate the dynamic recruitment and assembly of clathrin, early-, and late-stage endocytic accessory proteins. Importantly, clathrin forms ordered assemblies within the condensate environment. Biomolecular condensation therefore acts to promote dynamic protein assemblies throughout clathrin-mediated endocytosis. Furthermore, the disordered region sequence properties of AtEH1 regulate the material properties of the endocytic condensates in vivo and alteration of these material properties influences endocytosis dynamics, and consequently plant adaptive growth. Highlights AtEH subunits are endocytic scaffolds which drive condensation of the TPC AtEH1 condensates nucleate on the plasma membrane via lipid interactions Condensation of AtEH1/TPC facilitates clathrin re-arrangement and assembly AtEH1 IDR1 composition controls condensate properties to regulate endocytosis
86
Citation10
0
Save
29

Synaptotagmins Maintain Diacylglycerol Homeostasis at Endoplasmic Reticulum-Plasma Membrane Contact Sites during Abiotic Stress

Noemí Ruiz‐López et al.Jul 29, 2020
+18
R
J
N
SUMMARY Endoplasmic Reticulum-Plasma Membrane contact sites (ER-PM CS) play fundamental roles in all eukaryotic cells. Arabidopsis mutants lacking the ER-PM protein tether synaptotagmin1 (SYT1) exhibit decreased plasma membrane (PM) integrity under multiple abiotic stresses such as freezing, high salt, osmotic stress and mechanical damage. Here, we show that, together with SYT1 , the stress-induced SYT3 is an ER-PM tether that also functions in maintaining PM integrity. The ER-PM CS localization of SYT1 and SYT3 is dependent on PM phosphatidylinositol-4-phosphate and is regulated by abiotic stress. Lipidomic analysis revealed that cold stress increased the accumulation of diacylglycerol at the PM in a syt1/3 double mutant relative to WT while the levels of most glycerolipid species remain unchanged. Additionally, SYT1-GFP preferentially binds diacylglycerol in vivo with little affinity for polar glycerolipids. Our work uncovers a crucial SYT-dependent mechanism of stress adaptation counteracting the detrimental accumulation of diacylglycerol at the PM produced during episodes of abiotic stress.
29
Citation6
0
Save
12

Proteomic Characterization of Isolated Arabidopsis Clathrin-Coated Vesicles Reveals Evolutionarily Conserved and Plant Specific Components

Dana Dahhan et al.Sep 17, 2021
+14
G
D
D
Abstract In eukaryotes, clathrin-coated vesicles (CCVs) facilitate the internalization of material from the cell surface as well as the movement of cargo in post-Golgi trafficking pathways. This diversity of functions is partially provided by multiple monomeric and multimeric clathrin adaptor complexes that provide compartment and cargo selectivity. The adaptor- protein AP-1 complex operates as part of the secretory pathway at the trans -Golgi network, while the AP-2 complex and the TPLATE complex (TPC) jointly operate at the plasma membrane to execute clathrin-mediated endocytosis. Key to our further understanding of clathrin-mediated trafficking in plants will be the comprehensive identification and characterization of the network of evolutionarily conserved and plant- specific core and accessory machinery involved in the formation and targeting of CCVs. To facilitate these studies, we have analyzed the proteome of enriched trans -Golgi network/early endosome-derived and endocytic CCVs isolated from dividing and expanding suspension-cultured Arabidopsis cells. Tandem mass spectrometry analysis results were validated by differential chemical labeling experiments to identify proteins co-enriching with CCVs. Proteins enriched in CCVs included previously characterized CCV components and cargos such as the vacuolar sorting receptors in addition to conserved and plant-specific components whose function in clathrin-mediated trafficking has not been previously defined. Notably, in addition to AP-1 and AP-2, all subunits of the AP-4 complex, but not AP-3 or AP-5, were found to be in high abundance in the CCV proteome. The association of AP-4 with suspension-cultured Arabidopsis CCVs is further supported via additional biochemical data.
12
Citation3
0
Save
1

Chromatin attachment to the nuclear matrix represses hypocotyl elongation inArabidopsis thaliana

Linhao Xu et al.Jul 5, 2023
+8
K
S
L
Abstract The nuclear matrix is a nuclear compartment that has diverse functions in chromatin regulation and transcription. However, how this structure influences epigenetic modifications and gene expression in plants is largely unknown. In this study, we showed that a nuclear matrix binding protein, AHL22, together with the two transcriptional repressors FRS7 and FRS12, regulates hypocotyl elongation by suppressing the expression of a group of genes known as SMALL AUXIN UP RNAs ( SAURs ) in Arabidopsis thaliana . The transcriptional repression of SAURs depends on their attachment to the nuclear matrix. The AHL22 complex not only brings these SAURs, which contained matrix attachment regions (MARs), to the nuclear matrix, but it also recruits the histone deacetylase HDA15 to the SAUR loci. This leads to the removal of H3 acetylation at the SAUR loci and the suppression of hypocotyl elongation. Taken together, our results indicate that MAR-binding proteins act as a hub for chromatin and epigenetic regulators. Moreover, we present a novel mechanism by which nuclear matrix attachment to chromatin regulates histone modifications, transcription, and hypocotyl elongation.
1
Citation1
0
Save
1

Mapping the adaptor protein complex interaction network in Arabidopsis identifies P34 as a common stability regulator

Peng Wang et al.Sep 1, 2022
+17
J
D
P
Abstract Adaptor protein (AP) complexes are evolutionarily conserved vesicle transport regulators that recruit coat proteins, membrane cargos and coated vesicle accessory proteins. Since in plants endocytic and post-Golgi trafficking intersect at the trans -Golgi network, unique mechanisms for sorting cargos of overlapping vesicular routes are anticipated. The plant AP complexes are part of the sorting machinery, but despite some functional information, their cargoes, accessory proteins, and regulation remain largely unknown. Here, by means of various proteomics approaches, we generated the overall interactome of the five AP and the TPLATE complexes in Arabidopsis thaliana . The interactome converged on a number of hub proteins, including the thus far unknown adaptin binding-like protein, designated P34. P34 interacted with the clathrin-associated AP complexes, controlled their stability and, subsequently, influenced clathrin-mediated endocytosis and various post-Golgi trafficking routes. Altogether, the AP interactome network offers substantial resources for further discoveries of unknown endomembrane trafficking regulators in plant cells.
1
Citation1
0
Save
24

The TPLATE subunit is essential for structural assembly of the endocytic TSET complex

Klaas Yperman et al.Aug 13, 2020
+17
J
D
K
Summary All eukaryotic cells rely on endocytosis to regulate the plasma membrane proteome and lipidome. Most eukaryotic groups, with the exception of fungi and animals, have retained the evolutionary ancient TSET complex as a regulator of endocytosis. Despite the presence of similar building blocks in TSET, compared to other coatomer complexes, structural insight into this adaptor complex is lacking. Here, we elucidate the molecular architecture of the octameric plant TSET complex (TPLATE complex/TPC) using an integrative structural approach. This allowed us to describe a plant-specific connection between the TML subunit and the AtEH/Pan1 proteins and show a direct interaction between the complex and the plasma membrane without the need for any additional protein factors. Furthermore, we identify the appendage of TPLATE as crucial for complex assembly. Structural elucidation of this ancient adaptor complex vastly advances our functional as well as evolutionary insight into the process of endocytosis. Graphical abstract
24
Citation1
0
Save
0

Rapamycin-dependent delocalization as a novel tool to reveal protein-protein interactions in plants

Joanna Winkler et al.Mar 10, 2020
+4
B
A
J
Identifying protein-protein interactions (PPI) is crucial to understand any type of biological process. Many PPI tools are available, yet only some function within the context of a plant cell. Narrowing down even further, only few PPI tools allow visualizing higher order interactions. Here, we present a novel and conditional in vivo PPI tool for plant research. Knocksideways in plants (KSP) uses the ability of rapamycin to alter the localization of a bait protein and its interactors via the heterodimerization of FKBP and FRB domains. KSP is inherently free from many limitations, which other PPI systems hold. It is an in vivo tool, it is flexible concerning the orientation of protein tagging as long as this does not interfere with the interaction and it is compatible with a broad range of fluorophores. KSP is also a conditional tool and therefore does not require additional controls. The interactions can be quantified and in high throughput by the scripts that we provide. Finally, we demonstrate that KSP can visualize higher-order interactions. It is therefore a versatile tool, complementing the PPI methods field with unique characteristics and applications.
23

MYB12 spatiotemporally represses TMO5/LHW-mediated transcription in the Arabidopsis root meristem

Brecht Wybouw et al.Mar 10, 2022
+6
B
H
B
Abstract Transcriptional networks are crucial to integrate various internal and external signals into optimal responses during plant growth and development. Primary root vasculature patterning and proliferation are controlled by a network centred around the basic Helix-Loop-Helix transcription factor complex formed by TARGET OF MONOPTEROS 5 (TMO5) and LONESOME HIGHWAY (LHW), which control cell proliferation and orientation by modulating cytokinin response and other downstream factors. Despite recent progress, many aspects of the TMO5/LHW pathway are not fully understood. In particular, the upstream regulators of TMO5/LHW activity remain unknown. Here, using a forward genetic approach to identify new factors of the TMO5/LHW pathway, we discovered a novel function of the MYB-type transcription factor MYB12. MYB12 physically interacts with TMO5 and dampens the TMO5/LHW-mediated induction of direct target gene expression as well as the periclinal/radial cell divisions. The expression of MYB12 is activated by the cytokinin response, downstream of TMO5/LHW, resulting in a novel MYB12-mediated negative feedback loop that restricts TMO5/LHW activity to ensure optimal cell proliferation rates during root vascular development.
1

TPLATE complex dependent endocytosis is required for shoot apical meristem maintenance by attenuating CLAVATA1 signaling

Jie Wang et al.Oct 18, 2022
+12
P
R
J
Abstract Endocytosis regulates the turnover of cell surface localized receptors, which are crucial for plants to sense and rapidly respond to both endogenous and environmental stimuli. The evolutionarily ancient TPLATE complex (TPC) plays an essential role in clathrin-mediated endocytosis (CME) in Arabidopsis plants. Knockout or strong knockdown of single TPC subunits causes male sterility and seedling lethality phenotypes, complicating analysis of the roles of TPC during plant development. Partially functional alleles of TPC subunits however only cause very mild developmental deviations. Here, we took advantage of the recently reported partially functional TPLATE allele, WDXM2, to investigate a role for TPC-dependent endocytosis in receptor-mediated signalling. We discovered that reduced TPC-dependent endocytosis confers a hypersensitivity to very low doses of CLAVATA3 (CLV3) peptide signalling. This hypersensitivity correlated with the abundance of the CLV3 receptor protein kinase CLAVATA1 (CLV1) at the plasma membrane. Genetic analysis and live-cell imaging revealed that TPC-dependent regulation of CLV3-dependent internalization of CLV1 from the plasma membrane is required for CLV3 function in the shoot. Our findings provide evidence that clathrin-mediated endocytosis of CLV1 is a mechanism to dampen CLV3-mediated signaling during plant development.
0

Implementation of pupylation-based proximity labelling in plant biology reveals regulatory factors in cellulose biosynthesis

Shuai Zheng et al.Jan 9, 2024
+6
O
D
S
Knowledge about how and where proteins interact provides a pillar for cell biology. Biotin-related proximity labelling approaches are efficiently monitoring protein interactions but may have labelling-related drawbacks. Here, we introduce pupylation-based proximity labelling (PUP-IT) as a tool for protein interaction detection in plant biology. We show that PUP-IT readily confirmed and extended protein interactions for several known protein complexes, across different types of plant systems. To further demonstrate the power of PUP-IT, we used the system to identify protein interactions of the protein complex that underpin cellulose synthesis in plants. Apart from known complex components, we identified the ARF-GEF BEN1 (BFA-VISUALIZED ENDOCYTIC TRAFFICKING DEFECTIVE1). We show that BEN1 contributes to cellulose synthesis by regulating the trafficking of the cellulose synthesis protein complex between the trans-Golgi network and the plasma membrane. Our results, therefore, introduce PUP-IT as a new and powerful proximity labelling system to identify protein interactions in plant cells.
Load More