RM
Rex Malmstrom
Author with expertise in Marine Microbial Diversity and Biogeography
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
29
(79% Open Access)
Cited by:
2,694
h-index:
48
/
i10-index:
73
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Microbial community transcriptomes reveal microbes and metabolic pathways associated with dissolved organic matter turnover in the sea

Jay McCarren et al.Aug 31, 2010
Marine dissolved organic matter (DOM) contains as much carbon as the Earth's atmosphere, and represents a critical component of the global carbon cycle. To better define microbial processes and activities associated with marine DOM cycling, we analyzed genomic and transcriptional responses of microbial communities to high-molecular-weight DOM (HMWDOM) addition. The cell density in the unamended control remained constant, with very few transcript categories exhibiting significant differences over time. In contrast, the DOM-amended microcosm doubled in cell numbers over 27 h, and a variety of HMWDOM-stimulated transcripts from different taxa were observed at all time points measured relative to the control. Transcripts significantly enriched in the HMWDOM treatment included those associated with two-component sensor systems, phosphate and nitrogen assimilation, chemotaxis, and motility. Transcripts from Idiomarina and Alteromonas spp., the most highly represented taxa at the early time points, included those encoding TonB-associated transporters, nitrogen assimilation genes, fatty acid catabolism genes, and TCA cycle enzymes. At the final time point, Methylophaga rRNA and non-rRNA transcripts dominated the HMWDOM-amended microcosm, and included gene transcripts associated with both assimilatory and dissimilatory single-carbon compound utilization. The data indicated specific resource partitioning of DOM by different bacterial species, which results in a temporal succession of taxa, metabolic pathways, and chemical transformations associated with HMWDOM turnover. These findings suggest that coordinated, cooperative activities of a variety of bacterial “specialists” may be critical in the cycling of marine DOM, emphasizing the importance of microbial community dynamics in the global carbon cycle.
0
Citation397
0
Save
0

The Epigenomic Landscape of Prokaryotes

Matthew Blow et al.Feb 12, 2016
DNA methylation acts in concert with restriction enzymes to protect the integrity of prokaryotic genomes. Studies in a limited number of organisms suggest that methylation also contributes to prokaryotic genome regulation, but the prevalence and properties of such non-restriction-associated methylation systems remain poorly understood. Here, we used single molecule, real-time sequencing to map DNA modifications including m6A, m4C, and m5C across the genomes of 230 diverse bacterial and archaeal species. We observed DNA methylation in nearly all (93%) organisms examined, and identified a total of 834 distinct reproducibly methylated motifs. This data enabled annotation of the DNA binding specificities of 620 DNA Methyltransferases (MTases), doubling known specificities for previously hard to study Type I, IIG and III MTases, and revealing their extraordinary diversity. Strikingly, 48% of organisms harbor active Type II MTases with no apparent cognate restriction enzyme. These active 'orphan' MTases are present in diverse bacterial and archaeal phyla and show motif specificities and methylation patterns consistent with functions in gene regulation and DNA replication. Our results reveal the pervasive presence of DNA methylation throughout the prokaryotic kingdoms, as well as the diversity of sequence specificities and potential functions of DNA methylation systems.
0
Citation319
0
Save
0

Differential depth distribution of microbial function and putative symbionts through sediment-hosted aquifers in the deep terrestrial subsurface

Alexander Probst et al.Jan 26, 2018
Abstract An enormous diversity of previously unknown bacteria and archaea has been discovered recently, yet their functional capacities and distributions in the terrestrial subsurface remain uncertain. Here, we continually sampled a CO 2 -driven geyser (Colorado Plateau, Utah, USA) over its 5-day eruption cycle to test the hypothesis that stratified, sandstone-hosted aquifers sampled over three phases of the eruption cycle have microbial communities that differ both in membership and function. Genome-resolved metagenomics, single-cell genomics and geochemical analyses confirmed this hypothesis and linked microorganisms to groundwater compositions from different depths. Autotrophic Candidatus “Altiarchaeum sp.” and phylogenetically deep-branching nanoarchaea dominate the deepest groundwater. A nanoarchaeon with limited metabolic capacity is inferred to be a potential symbiont of the Ca . “Altiarchaeum”. Candidate Phyla Radiation bacteria are also present in the deepest groundwater and they are relatively abundant in water from intermediate depths. During the recovery phase of the geyser, microaerophilic Fe- and S-oxidizers have high in situ genome replication rates. Autotrophic Sulfurimonas sustained by aerobic sulfide oxidation and with the capacity for N 2 fixation dominate the shallow aquifer. Overall, 104 different phylum-level lineages are present in water from these subsurface environments, with uncultivated archaea and bacteria partitioned to the deeper subsurface.
0
Paper
Citation257
0
Save
0

Genome-wide selective sweeps and gene-specific sweeps in natural bacterial populations

Matthew Bendall et al.Jan 8, 2016
Abstract Multiple models describe the formation and evolution of distinct microbial phylogenetic groups. These evolutionary models make different predictions regarding how adaptive alleles spread through populations and how genetic diversity is maintained. Processes predicted by competing evolutionary models, for example, genome-wide selective sweeps vs gene-specific sweeps, could be captured in natural populations using time-series metagenomics if the approach were applied over a sufficiently long time frame. Direct observations of either process would help resolve how distinct microbial groups evolve. Here, from a 9-year metagenomic study of a freshwater lake (2005–2013), we explore changes in single-nucleotide polymorphism (SNP) frequencies and patterns of gene gain and loss in 30 bacterial populations. SNP analyses revealed substantial genetic heterogeneity within these populations, although the degree of heterogeneity varied by &gt;1000-fold among populations. SNP allele frequencies also changed dramatically over time within some populations. Interestingly, nearly all SNP variants were slowly purged over several years from one population of green sulfur bacteria, while at the same time multiple genes either swept through or were lost from this population. These patterns were consistent with a genome-wide selective sweep in progress, a process predicted by the ‘ecotype model’ of speciation but not previously observed in nature. In contrast, other populations contained large, SNP-free genomic regions that appear to have swept independently through the populations prior to the study without purging diversity elsewhere in the genome. Evidence for both genome-wide and gene-specific sweeps suggests that different models of bacterial speciation may apply to different populations coexisting in the same environment.
0
Citation245
0
Save
0

Genome-wide identification of bacterial plant colonization genes

Benjamin Cole et al.Sep 22, 2017
Diverse soil-resident bacteria can contribute to plant growth and health, but the molecular mechanisms enabling them to effectively colonize their plant hosts remain poorly understood. We used randomly barcoded transposon mutagenesis sequencing (RB-TnSeq) in Pseudomonas simiae, a model root-colonizing bacterium, to establish a genome-wide map of bacterial genes required for colonization of the Arabidopsis thaliana root system. We identified 115 genes (2% of all P. simiae genes) with functions that are required for maximal competitive colonization of the root system. Among the genes we identified were some with obvious colonization-related roles in motility and carbon metabolism, as well as 44 other genes that had no or vague functional predictions. Independent validation assays of individual genes confirmed colonization functions for 20 of 22 (91%) cases tested. To further characterize genes identified by our screen, we compared the functional contributions of P. simiae genes to growth in 90 distinct in vitro conditions by RB-TnSeq, highlighting specific metabolic functions associated with root colonization genes. Our analysis of bacterial genes by sequence-driven saturation mutagenesis revealed a genome-wide map of the genetic determinants of plant root colonization and offers a starting point for targeted improvement of the colonization capabilities of plant-beneficial microbes.
0
Citation197
0
Save
9

HT-SIP: A semi-automated Stable Isotope Probing pipeline identifies interactions in the hyphosphere of arbuscular mycorrhizal fungi

Erin Nuccio et al.Jul 2, 2022
ABSTRACT Background Linking the identity of wild microbes with their ecophysiological traits and environmental functions is a key ambition for microbial ecologists. Of many techniques that strive to meet this goal, Stable Isotope Probing—SIP—remains the most comprehensive for studying whole microbial communities in situ . In DNA-SIP, active microorganisms that take up an isotopically heavy substrate build heavier DNA, which can be partitioned by density into multiple fractions and sequenced. However, SIP is relatively low throughput and requires significant hands-on labor. We designed and tested a semi-automated DNA-SIP pipeline to support well-replicated, temporally-resolved amplicon or metagenomics experiments that enable studies of dynamic microbial communities over space and time. To test this pipeline, we assembled SIP-metagenome assembled genomes (MAGs) from the hyphosphere zone surrounding arbuscular mycorrhizal fungi (AMF), in combination with a 13 CO 2 plant labelling study. Results Our semi-automated pipeline for DNA fractionation, cleanup, and nucleic acid quantification of SIP density gradients requires six times less hands-on labor compared to manual SIP and allows 16 samples to be processed simultaneously. Automated density fractionation increased the reproducibility of SIP gradients and reduced variation compared to manual fractionation, and we show adding a non-ionic detergent to the gradient buffer improved SIP DNA recovery. We then tested this pipeline on samples from a highly-constrained soil microhabitat with significant ecological importance, the AMF fungal hyphosphere. Processing via our quantitative SIP pipeline confirmed the AMF Rhizophagus intraradices and its associated microbiome were highly 13 C enriched, even though the soils’ overall enrichment was only 1.8 atom% 13 C. We assembled 212 13 C-enriched hyphosphere MAGs, and the hyphosphere taxa that assimilated the most AMF-derived 13 C (range 10-33 atom%) were from the phlya Myxococcota, Fibrobacterota, Verrucomicrobiota, and the ammonia oxidizing archaeon genus Nitrososphaeara . Conclusions Our semi-automated SIP approach decreases operator time and errors and improves reproducibility by targeting the most labor-intensive steps of SIP—fraction collection and cleanup. Here, we illustrate this approach in a unique and understudied soil microhabitat—generating MAGs of active microbes living in the AMF hyphosphere (without plant roots). Their phylogenetic composition and gene content suggest predation, decomposition, and ammonia oxidation may be key processes in hyphosphere nutrient cycling.
9
Citation10
0
Save
0

Ecophysiology of freshwater Verrucomicrobia inferred from metagenome-assembled genomes

Shaomei He et al.Jun 14, 2017
ABSTRACT Microbes are critical in carbon and nutrient cycling in freshwater ecosystems. Members of the Verrucomicrobia are ubiquitous in such systems, yet their roles and ecophysiology are not well understood. In this study, we recovered 19 Verrucomicrobia draft genomes by sequencing 184 time-series metagenomes from a eutrophic lake and a humic bog that differ in carbon source and nutrient availabilities. These genomes span four of the seven previously defined Verrucomicrobia subdivisions, and greatly expand the known genomic diversity of freshwater Verrucomicrobia. Genome analysis revealed their potential role as (poly)saccharide-degraders in freshwater, uncovered interesting genomic features for this life style, and suggested their adaptation to nutrient availabilities in their environments. Between the two lakes, Verrucomicrobia populations differ significantly in glycoside hydrolase gene abundance and functional profiles, reflecting the autochthonous and terrestrially-derived allochthonous carbon sources of the two ecosystems respectively. Interestingly, a number of genomes recovered from the bog contained gene clusters that potentially encode a novel porin-multiheme cytochrome c complex and might be involved in extracellular electron transfer in the anoxic humic-rich environment. Notably, most epilimnion genomes have large numbers of so-called “Planctomycete-specific” cytochrome c -containing genes, which exhibited nearly opposite distribution patterns with glycoside hydrolase genes, probably associated with the different environmental oxygen availability and carbohydrate complexity between lakes/layers. Overall, the recovered genomes are a major step towards understanding the role, ecophysiology and distribution of Verrucomicrobia in freshwater. IMPORTANCE Freshwater Verrucomicrobia are cosmopolitan in lakes and rivers, yet their roles and ecophysiology are not well understood, as cultured freshwater Verrucomicrobia are restricted to one subdivision of this phylum. Here, we greatly expand the known genomic diversity of this freshwater lineage by recovering 19 Verrucomicrobia draft genomes from 184 metagenomes collected from a eutrophic lake and a humic bog across multiple years. Most of these genomes represent first freshwater representatives of several Verrucomicrobia subdivisions. Genomic analysis revealed Verrucomicrobia as potential (poly)saccharide-degraders, and suggested their adaptation to carbon source of different origins in the two contrasting ecosystems. We identified putative extracellular electron transfer genes and so-called “Planctomycete-specific” cytochrome c -containing genes, and found their distinct distribution patterns between the lakes/layers. Overall, our analysis greatly advances the understanding of the function, ecophysiology and distribution of freshwater Verrucomicrobia, while highlighting their potential role in freshwater carbon cycling.
0
Citation6
0
Save
Load More