Abstract Divalent cations in a concentration-dependent manner behave as effective crosslinkers of intermediate filaments (IFs) such as vimentin IF (VIF). These interactions have been mostly attributed to their multivalency. However, ion-protein interactions often depend on the ion species, and these effects have not been widely studied in IFs. Here we investigate the effects of two biologically important divalent cations, Zn 2+ and Ca 2+ , on VIF network structure and mechanics in vitro . We find that the network structure is unperturbed at micromolar Zn 2+ concentrations, but strong bundle formation is observed at a concentration of 100 μM. Microrheological measurements show that network stiffness increases with cation concentration. However, bundling of filaments softens the network. This trend also holds for VIF networks formed in the presence of Ca 2+ , but remarkably, a concentration of Ca 2+ that is two orders higher is needed to achieve the same effect as with Zn 2+ , which suggests the importance of salt-protein interactions as described by the Hofmeister effect. Furthermore, we find evidence of competitive binding between the two divalent ion species. Hence, specific interactions between VIFs and divalent cations are likely to be an important mechanism by which cells can control their cytoplasmic mechanics. Significance Intermediate filaments are key structural elements within cells; they are known to form networks that can be crosslinked by divalent cations, but the interactions between the ions and the filaments are not well understood. By measuring the effects that two divalent cations, zinc and calcium, have on the structure and mechanics of vimentin intermediate filaments (VIFs), we show that although both have concentration-dependent effects on VIFs, much more calcium is needed to achieve the same effect as a small amount of zinc. Furthermore, when mixtures of the ions are present, the results suggest that there is binding competition. Thus, cells may use the presence of different cation species to precisely control their internal mechanical properties.