The endoplasmic reticulum (ER) is a key organelle of membrane biogenesis and crucial for the folding of both membrane and secretory proteins. Stress sensors of the unfolded protein response (UPR) monitor the unfolded protein load in the ER and convey effector functions for the maintenance of ER homeostasis. More recently, it became clear that aberrant compositions of the ER membrane, referred to as lipid bilayer stress, are equally potent activators of the UPR with important implications in obesity and diabetes. How the distinct signals from lipid bilayer stress and proteotoxic stress are processed by the highly conserved UPR transducer Ire1 remains unknown. Here, we have generated a functional, cysteine-less variant of Ire1 and performed systematic cysteine crosslinking experiments to establish the transmembrane architecture of signaling-active clusters in native membranes. We show that the transmembrane helices of two neighboring Ire1 molecules adopt an X-shaped configuration and that this configuration is independent of the primary cause for ER stress. Based on these findings, we propose that different forms of stress converge in a single, signaling-active conformation of Ire1.