MS
Maya Schuldiner
Author with expertise in Genomic Expression and Function in Yeast Organism
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
60
(82% Open Access)
Cited by:
11,769
h-index:
61
/
i10-index:
136
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Differentiation of Human Embryonic Stem Cells into Embryoid Bodies Comprising the Three Embryonic Germ Layers

Joseph Itskovitz‐Eldor et al.Feb 1, 2000
Embryonic stem (ES) cells are lines of cells that are isolated from blastocysts. The murine ES cells were demonstrated to be true pluripotent cells as they differentiate into all embryonic lineages. Yet, in vitro differentiation of rhesus ES cells was somewhat inconsistent and disorganized. The recent isolation of human ES cells calls for exploring their pluripotential nature. Human ES cells were grown in suspension to induce their differentiation into embryoid bodies (EBs). The differentiation status of the human ES cells and EBs was analyzed by following the expression pattern of several lineage-specific molecular markers using reverse transcription polymerase chain reaction (RT-PCR) and in situ hybridization. Here we report the induction in vitro of cystic embryoid bodies from human ES cells. Our findings demonstrate induction of expression of cell-specific genes during differentiation of the human ES cells into EBs. In the human EBs, we could show a characteristic regional expression of embryonic markers specific to different cellular lineages, namely, ζ-globin (mesoderm), neurofilament 68Kd (ectoderm), and α-fetoprotein (endoderm). Moreover, we present a synchronously pulsing embryoid body that expresses the myocardium marker α-cardiac actin. In addition, dissociating the embryoid bodies and plating the cells as monolayers results in multiple morphologies, among them cells with neuronal appearance that express neurofilament 68Kd chain. Human ES cells can reproducibly differentiate in vitro into EBs comprising the three embryonic germ layers. The ability to induce formation of human embryoid bodies that contain cells of neuronal, hematopoietic and cardiac origins will be useful in studying early human embryonic development as well as in transplantation medicine.
0
Citation1,463
0
Save
0

Effects of eight growth factors on the differentiation of cells derived from human embryonic stem cells

Maya Schuldiner et al.Oct 10, 2000
Human embryonic stem (ES) cells are pluripotent cells derived from the inner cell mass of in vitro fertilized human blastocysts. We examined the potential of eight growth factors [basic fibroblast growth factor (bFGF), transforming growth factor β1 (TGF-β1), activin-A, bone morphogenic protein 4 (BMP-4), hepatocyte growth factor (HGF), epidermal growth factor (EGF), β nerve growth factor (βNGF), and retinoic acid] to direct the differentiation of human ES-derived cells in vitro . We show that human ES cells that have initiated development as aggregates (embryoid bodies) express a receptor for each of these factors, and that their effects are evident by differentiation into cells with different epithelial or mesenchymal morphologies. Differentiation of the cells was assayed by expression of 24 cell-specific molecular markers that cover all embryonic germ layers and 11 different tissues. Each growth factor has a unique effect that may result from directed differentiation and/or cell selection, and we can divide the overall effects of the factors into three categories: growth factors (Activin-A and TGFβ1) that mainly induce mesodermal cells; factors (retinoic acid, EGF, BMP-4, and bFGF) that activate ectodermal and mesodermal markers; and factors (NGF and HGF) that allow differentiation into the three embryonic germ layers, including endoderm. None of the growth factors directs differentiation exclusively to one cell type. This analysis sets the stage for directing differentiation of human ES cells in culture and indicates that multiple human cell types may be enriched in vitro by specific factors.
0
Citation1,126
0
Save
0

Characterization of the expression of MHC proteins in human embryonic stem cells

Micha Drukker et al.Jul 11, 2002
Human embryonic stem (ES) cells are pluripotent cells that may be used in transplantation medicine. These cells can be induced to differentiate into cells from the three embryonic germ layers both in vivo and in vitro . To determine whether human ES cells might be rejected after transplantation, we examined cell surface expression of the MHC proteins in these cells. Our results show very low expression levels of MHC class I (MHC-I) proteins on the surface of human ES cells that moderately increase on in vitro or in vivo differentiation. A dramatic induction of MHC-I proteins was observed when the cells were treated with IFN-γ but not with IFN-α or -β. However, all three IFNs induced expression of MHC-I proteins in differentiated human ES cells. MHC-II proteins and HLA-G were not expressed on the surface of undifferentiated or differentiated cells. Ligands for natural killer cell receptors were either absent or expressed in very low levels in human ES cells and in their differentiated derivatives. In accordance, natural killer cytotoxic assays demonstrated only limited lysis of both undifferentiated and differentiated cells. To initiate a histocompatibility databank of human ES cells, we have isotyped several of the published ES cell lines for their human leukocyte antigens. In conclusion, our results demonstrate that human ES cells can express high levels of MHC-I proteins and thus may be rejected on transplantation.
0
Citation654
0
Save
0

A comprehensive strategy enabling high-resolution functional analysis of the yeast genome

David Breslow et al.Jul 11, 2008
To increase the range and precision of genetic interaction studies in Saccharomyces cerevisiae, a collection of hypomorphic alleles of essential yeast genes and a highly sensitive flow cytometry–based growth competition assay are presented. Also in this issue, Yan et al. present a similar strain collection, tagged with unique bar-code identifiers, and use this collection in pooled chemical genetic screens. Functional genomic studies in Saccharomyces cerevisiae have contributed enormously to our understanding of cellular processes. Their full potential, however, has been hampered by the limited availability of reagents to systematically study essential genes and the inability to quantify the small effects of most gene deletions on growth. Here we describe the construction of a library of hypomorphic alleles of essential genes and a high-throughput growth competition assay to measure fitness with unprecedented sensitivity. These tools dramatically increase the breadth and precision with which quantitative genetic analysis can be performed in yeast. We illustrate the value of these approaches by using genetic interactions to reveal new relationships between chromatin-modifying factors and to create a functional map of the proteasome. Finally, by measuring the fitness of strains in the yeast deletion library, we addressed an enigma regarding the apparent prevalence of gene dispensability and found that most genes do contribute to growth.
0
Citation535
0
Save
Load More