JP
Joseph Pickrell
Author with expertise in Genomic Studies and Association Analyses
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
23
(39% Open Access)
Cited by:
90
h-index:
40
/
i10-index:
56
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
41

Low-pass sequencing increases the power of GWAS and decreases measurement error of polygenic risk scores compared to genotyping arrays

Jeremiah Li et al.Apr 30, 2020
Abstract Low-pass sequencing (sequencing a genome to an average depth less than 1 coverage) combined with genotype imputation has been proposed as an alternative to genotyping arrays for trait mapping and calculation of polygenic scores. To empirically assess the relative performance of these technologies for different applications, we performed low-pass sequencing (targeting coverage levels of 0.5× and 1×) and array genotyping (using the Illumina Global Screening Array (GSA)) on 120 DNA samples derived from African and European-ancestry individuals that are part of the 1000 Genomes Project. We then imputed both the sequencing data and the genotyping array data to the 1000 Genomes Phase 3 haplotype reference panel using a leave-one-out design. We evaluated overall imputation accuracy from these different assays as well as overall power for GWAS from imputed data, and computed polygenic risk scores for coronary artery disease and breast cancer using previously derived weights. We conclude that low-pass sequencing plus imputation, in addition to providing a substantial increase in statistical power for genome wide association studies, provides increased accuracy for polygenic risk prediction at effective coverages of ~ 0.5× and higher compared to the Illumina GSA.
41
Citation10
0
Save
66

Low-coverage sequencing cost-effectively detects known and novel variation in underrepresented populations

Alicia Martin et al.Apr 28, 2020
Abstract Background Genetic studies of biomedical phenotypes in underrepresented populations identify disproportionate numbers of novel associations. However, current genomics infrastructure--including most genotyping arrays and sequenced reference panels--best serves populations of European descent. A critical step for facilitating genetic studies in underrepresented populations is to ensure that genetic technologies accurately capture variation in all populations. Here, we quantify the accuracy of low-coverage sequencing in diverse African populations. Results We sequenced the whole genomes of 91 individuals to high-coverage (≥20X) from the Neuropsychiatric Genetics of African Population-Psychosis (NeuroGAP-Psychosis) study, in which participants were recruited from Ethiopia, Kenya, South Africa, and Uganda. We empirically tested two data generation strategies, GWAS arrays versus low-coverage sequencing, by calculating the concordance of imputed variants from these technologies with those from deep whole genome sequencing data. We show that low-coverage sequencing at a depth of ≥4X captures variants of all frequencies more accurately than all commonly used GWAS arrays investigated and at a comparable cost. Lower depths of sequencing (0.5-1X) performed comparable to commonly used low-density GWAS arrays. Low-coverage sequencing is also sensitive to novel variation, with 4X sequencing detecting 45% of singletons and 95% of common variants identified in high-coverage African whole genomes. Conclusion These results indicate that low-coverage sequencing approaches surmount the problems induced by the ascertainment of common genotyping arrays, including those that capture variation most common in Europeans and Africans. Low-coverage sequencing effectively identifies novel variation (particularly in underrepresented populations), and presents opportunities to enhance variant discovery at a similar cost to traditional approaches.
66
Citation8
0
Save
0

Relative matching using low coverage sequencing

Ella Petter et al.Sep 9, 2020
Abstract Finding familial relatives using DNA has multiple applications, in genetic genealogy, population genetics, and forensics. So far, most relative matching algorithms rely on detecting identity-by-descent (IBD) segments with high quality genotype data. Recently, low coverage sequencing (LCS) has received growing attention as a promising cost-effective method to ascertain genomic information. However, with higher error rates, it is unclear whether existing IBD detection can work on LCS datasets. Here, we developed and tested a framework for relative matching using sequencing with 1× coverage (1×LCS). We started by exploring the error characteristics of this method compared to array data. Our results show that after some optimization 1×LCS can exhibit the same genotyping discordance rates as the discordance between two array platforms. Using this observation, we developed a hybrid framework for relative matching and tuned this framework with >2,700 pairs of confirmed genealogical relatives that were genotyped using heterogenous datasets. We then obtained array and 1×LCS on 19 samples and use our framework to find relatives in a database of over 3 million individuals. The total length of shared segments obtained by 1×LCS was virtually indistinguishable to genotyping arrays for matches with a total sharing >200cM (second cousins or closer). For more distant relatives, as long as those were detected by both technologies, the total length obtained by LCS and by genotyping arrays was highly correlated, with no evidence of over- or underestimation. Taken together, our results show that 1×LCS can be a valid alternative to arrays for relative matching, opening the possibility for further democratization of genomic data.
0
Citation4
0
Save
0

Detecting polygenic adaptation in admixture graphs

Fernando Racimo et al.Jun 4, 2017
An open question in human evolution is the importance of polygenic adaptation: adaptive changes in the mean of a multifactorial trait due to shifts in allele frequencies across many loci. In recent years, several methods have been developed to detect polygenic adaptation using loci identified in genome-wide association studies (GWAS). Though powerful, these methods suffer from limited interpretability: they can detect which sets of populations have evidence for polygenic adaptation, but are unable to reveal where in the history of multiple populations these processes occurred. To address this, we created a method to detect polygenic adaptation in an admixture graph, which is a representation of the historical divergences and admixture events relating different populations through time. We developed a Markov chain Monte Carlo (MCMC) algorithm to infer branch-specific parameters reflecting the strength of selection in each branch of a graph. Additionally, we developed a set of summary statistics that are fast to compute and can indicate which branches are most likely to have experienced polygenic adaptation. We show via simulations that this method - which we call PolyGraph - has good power to detect polygenic adaptation, and applied it to human population genomic data from around the world. We also provide evidence that variants associated with several traits, including height, educational attainment, and self-reported unibrow, have been influenced by polygenic adaptation in different populations during human evolution.
0

Identifying genetic variants that affect viability in large cohorts

Hakhamanesh Mostafavi et al.Nov 7, 2016
A number of open questions in human evolutionary genetics would become tractable if we were able to directly measure evolutionary fitness. As a step towards this goal, we developed a method to examine whether individual genetic variants, or sets of genetic variants, currently influence viability. The approach consists in testing whether the frequency of an allele varies across ages, accounting for variation in ancestry. We applied it to the Genetic Epidemiology Research on Aging (GERA) cohort and to the parents of participants in the UK Biobank. Across the genome, we find only a few common variants with large effects on age-specific mortality: tagging the APOE ϵ4 allele and near CHRNA3. These results suggest that when large, even late onset effects are kept at low frequency by purifying selection. Testing viability effects of sets of genetic variants that jointly influence one of 42 traits, we detect a number of strong signals. In participants of the UK Biobank study of British ancestry, we find that variants that delay puberty timing are enriched in longer-lived parents (P~6×10-6 for fathers and P~2×10-3 for mothers), consistent with epidemiological studies. Similarly, in mothers, variants associated with later age at first birth are associated with a longer lifespan (P~1×10-3). Signals are also observed for variants influencing cholesterol levels, risk of coronary artery disease, body mass index, as well as risk of asthma. These signals exhibit consistent effects in the GERA cohort and among participants of the UK Biobank of non-British ancestry. Moreover, we see marked differences between males and females, most notably at the CHRNA3 locus, and variants associated with risk of coronary artery disease and cholesterol levels. Beyond our findings, the analysis serves as a proof of principle for how upcoming biomedical datasets can be used to learn about selection effects in contemporary humans.
Load More