JH
Jeff Hammerbacher
Author with expertise in Prediction of Peptide-MHC Binding Affinity
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
26
(100% Open Access)
Cited by:
1,597
h-index:
21
/
i10-index:
29
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Genomic Features of Response to Combination Immunotherapy in Patients with Advanced Non-Small-Cell Lung Cancer

Matthew Hellmann et al.Apr 12, 2018
+29
H
T
M
Combination immune checkpoint blockade has demonstrated promising benefit in lung cancer, but predictors of response to combination therapy are unknown. Using whole-exome sequencing to examine non-small-cell lung cancer (NSCLC) treated with PD-1 plus CTLA-4 blockade, we found that high tumor mutation burden (TMB) predicted improved objective response, durable benefit, and progression-free survival. TMB was independent of PD-L1 expression and the strongest feature associated with efficacy in multivariable analysis. The low response rate in TMB low NSCLCs demonstrates that combination immunotherapy does not overcome the negative predictive impact of low TMB. This study demonstrates the association between TMB and benefit to combination immunotherapy in NSCLC. TMB should be incorporated in future trials examining PD-(L)1 with CTLA-4 blockade in NSCLC.
0
Citation881
0
Save
0

MHCflurry: Open-Source Class I MHC Binding Affinity Prediction

Timothy O’Donnell et al.Jun 28, 2018
+3
M
A
T
Predicting the binding affinity of major histocompatibility complex I (MHC I) proteins and their peptide ligands is important for vaccine design. We introduce an open-source package for MHC I binding prediction, MHCflurry. The software implements allele-specific neural networks that use a novel architecture and peptide encoding scheme. When trained on affinity measurements, MHCflurry outperformed the standard predictors NetMHC 4.0 and NetMHCpan 3.0 overall and particularly on non-9-mer peptides in a benchmark of ligands identified by mass spectrometry. The released predictor, MHCflurry 1.2.0, uses mass spectrometry datasets for model selection and showed competitive accuracy with standard tools, including the recently released NetMHCpan 4.0, on a small benchmark of affinity measurements. MHCflurry's prediction speed exceeded 7,000 predictions per second, 396 times faster than NetMHCpan 4.0. MHCflurry is freely available to use, retrain, or extend, includes Python library and command line interfaces, may be installed using package managers, and applies software development best practices.
0
Citation345
0
Save
0

Contribution of systemic and somatic factors to clinical response and resistance to PD-L1 blockade in urothelial cancer: An exploratory multi-omic analysis

Alexandra Snyder et al.May 26, 2017
+18
S
T
A
Background Inhibition of programmed death-ligand 1 (PD-L1) with atezolizumab can induce durable clinical benefit (DCB) in patients with metastatic urothelial cancers, including complete remissions in patients with chemotherapy refractory disease. Although mutation load and PD-L1 immune cell (IC) staining have been associated with response, they lack sufficient sensitivity and specificity for clinical use. Thus, there is a need to evaluate the peripheral blood immune environment and to conduct detailed analyses of mutation load, predicted neoantigens, and immune cellular infiltration in tumors to enhance our understanding of the biologic underpinnings of response and resistance. Methods and findings The goals of this study were to (1) evaluate the association of mutation load and predicted neoantigen load with therapeutic benefit and (2) determine whether intratumoral and peripheral blood T cell receptor (TCR) clonality inform clinical outcomes in urothelial carcinoma treated with atezolizumab. We hypothesized that an elevated mutation load in combination with T cell clonal dominance among intratumoral lymphocytes prior to treatment or among peripheral T cells after treatment would be associated with effective tumor control upon treatment with anti-PD-L1 therapy. We performed whole exome sequencing (WES), RNA sequencing (RNA-seq), and T cell receptor sequencing (TCR-seq) of pretreatment tumor samples as well as TCR-seq of matched, serially collected peripheral blood, collected before and after treatment with atezolizumab. These parameters were assessed for correlation with DCB (defined as progression-free survival [PFS] >6 months), PFS, and overall survival (OS), both alone and in the context of clinical and intratumoral parameters known to be predictive of survival in this disease state. Patients with DCB displayed a higher proportion of tumor-infiltrating T lymphocytes (TIL) (n = 24, Mann-Whitney p = 0.047). Pretreatment peripheral blood TCR clonality below the median was associated with improved PFS (n = 29, log-rank p = 0.048) and OS (n = 29, log-rank p = 0.011). Patients with DCB also demonstrated more substantial expansion of tumor-associated TCR clones in the peripheral blood 3 weeks after starting treatment (n = 22, Mann-Whitney p = 0.022). The combination of high pretreatment peripheral blood TCR clonality with elevated PD-L1 IC staining in tumor tissue was strongly associated with poor clinical outcomes (n = 10, hazard ratio (HR) (mean) = 89.88, HR (median) = 23.41, 95% CI [2.43, 506.94], p(HR > 1) = 0.0014). Marked variations in mutation loads were seen with different somatic variant calling methodologies, which, in turn, impacted associations with clinical outcomes. Missense mutation load, predicted neoantigen load, and expressed neoantigen load did not demonstrate significant association with DCB (n = 25, Mann-Whitney p = 0.22, n = 25, Mann-Whitney p = 0.55, and n = 25, Mann-Whitney p = 0.29, respectively). Instead, we found evidence of time-varying effects of somatic mutation load on PFS in this cohort (n = 25, p = 0.044). A limitation of our study is its small sample size (n = 29), a subset of the patients treated on IMvigor 210 (NCT02108652). Given the number of exploratory analyses performed, we intend for these results to be hypothesis-generating. Conclusions These results demonstrate the complex nature of immune response to checkpoint blockade and the compelling need for greater interrogation and data integration of both host and tumor factors. Incorporating these variables in prospective studies will facilitate identification and treatment of resistant patients.
0

Vaxrank: A computational tool for designing personalized cancer vaccines

Alex Rubinsteyn et al.May 27, 2017
J
J
I
A
Abstract Therapeutic vaccines targeting mutant tumor antigens (“neoantigens”) are an increasingly popular form of personalized cancer immunotherapy. Vaxrank is a computational tool for selecting neoantigen vaccine peptides from tumor mutations, tumor RNA data, and patient HLA type. Vaxrank is freely available at www.github.com/openvax/vaxrank under the Apache 2.0 open source license and can also be installed from the Python Package Index.
0
Citation24
0
Save
0

Viable and efficient electroporation-based genetic manipulation of unstimulated human T cells

Pınar Aksoy et al.Nov 8, 2018
J
E
B
P
Abstract Electroporation is the most feasible non-viral material delivery system for manipulating human T cells given its time- and cost-effectiveness. However, efficient delivery requires electroporation settings to be optimized for different devices, cellular states, and materials to be delivered. Here, we used electroporation to either induce exogenous gene expression in human primary T cells by plasmids or in vitro transcribed (IVT) mRNA and also target endogenous genes by Cas9 ribonucleoproteins (RNPs). We characterized the electroporation conditions both for activated and unstimulated human T cells. Although naive cells are non-dividing and therefore their genetic manipulation is harder compared to activated T cells, we developed the technical ability to manipulate both naive and memory cells within the unstimulated T cell population by IVT mRNA and Cas9 RNP electroporation. Here, we outline the best practices for achieving highly-efficient genetic manipulation in primary T cells without causing significant cytotoxicity to the cells. Because there is increasing evidence for “less-differentiated” T cells to have better anti-tumor activity for immunotherapy, manipulating naive T cells with high efficiency is also of high importance to clinical applications and to study the biology of these cells.
0
Citation16
0
Save
0

Predicting Peptide-MHC Binding Affinities with Imputed Training Data

Alex Rubinsteyn et al.May 22, 2016
J
N
T
A
Abstract Predicting the binding affinity between MHC proteins and their peptide ligands is a key problem in computational immunology. State of the art performance is currently achieved by the allele-specific predictor NetMHC and the pan-allele predictor NetMHCpan, both of which are ensembles of shallow neural networks. We explore an intermediate between allele-specific and pan-allele prediction: training allele-specific predictors with synthetic samples generated by imputation of the peptide-MHC affinity matrix. We find that the imputation strategy is useful on alleles with very little training data. We have implemented our predictor as an open-source software package called MHCflurry and show that MHCflurry achieves competitive performance to NetMHC and NetMHCpan.
0
Citation11
0
Save
0

MHCflurry: open-source class I MHC binding affinity prediction

Timothy O’Donnell et al.Aug 9, 2017
+2
M
A
T
Abstract Machine learning prediction of the interaction between major histocompatibility complex I (MHC I) proteins and their small peptide ligands is important for vaccine design and other applications in adaptive immunity. We describe and benchmark a new open-source MHC I binding prediction package, MHCflurry. The software is a collection of allele-specific binding predictors incorporating a novel neural network architecture and adhering to software development best practices. MHCflurry outperformed the standard predictors NetMHC 4.0 and NetMHCpan 3.0 on a benchmark of mass spec-identified MHC ligands and showed competitive accuracy on a benchmark of affinity measurements. The accuracy improvement was due to substantially better prediction of non-9-mer peptide ligands, which offset a narrowly lower accuracy on 9-mers. MHCflurry was on average 8.6X faster than NetMHC and 44X faster than NetMHCpan; performance is further increased when a graphics processing unit (GPU) is available. MHCflurry is freely available to use, retrain, or extend, includes Python library and command line interfaces, and may be installed using standard package managers.
0

Bioinformatics Workflow Management With The Wobidisco Ecosystem

Sebastien Mondet et al.Nov 7, 2017
+2
L
B
S
References To conduct our computational experiments, our team developed a set of workflow-management-related projects: Ketrew, Biokepi, and Coclobas. The family of tools and libraries are designed with reliability and flexibility as main guiding principles. We describe the components of the software stack and explain the choices we made. Every piece of software is free and open-source; the umbrella documentation project is available at https://github.com/hammerlab/wobidisco .
0
Citation5
0
Save
0

Cytokit: A single-cell analysis toolkit for high dimensional fluorescent microscopy imaging

Eric Czech et al.Nov 4, 2018
J
P
B
E
Abstract Background Multiplexed in-situ fluorescent imaging offers several advantages over single-cell assays that do not preserve the spatial characteristics of biological samples. This spatial information, in addition to morphological properties and extensive intracellular or surface marker profiling, comprise promising avenues for rapid advancements in the understanding of disease progression and diagnosis. As protocols for conducting such imaging experiments continue to improve, it is the intent of this study to provide and validate software for processing the large quantity of associated data in kind. Results Cytokit offers (i) an end-to-end, GPU-accelerated image processing pipeline; (ii) efficient input/output (I/O) strategies for operations specific to high dimensional microscopy; and (iii) an interactive user interface for cross filtering of spatial, graphical, expression, and morphological cell properties within the 100+ GB image datasets common to multiplexed immunofluorescence. Image processing operations supported in Cytokit are generally sourced from existing deep learning models or are at least in part adapted from open source packages to run in a single or multi-GPU environment. The efficacy of these operations is demonstrated through several imaging experiments that pair Cytokit results with those from an independent but comparable assay. A further validation also demonstrates that previously published results can be reproduced from a publicly available multiplexed image dataset. Conclusion Cytokit is a collection of open source tools for quantifying and analyzing properties of individual cells in large fluorescent microscopy datasets that are often, but not necessarily, generated from multiplexed antibody labeling protocols over many fields of view or time periods. This project is best suited to bioinformaticians or other technical users that wish to analyze such data in a batch-oriented, high-throughput setting. All source code, documentation, and data generated for this article are available under the Apache License 2.0 at https://github.com/hammerlab/cytokit .
0

Somatic Mutations and Neoepitope Homology in Melanomas Treated with CTLA-4 Blockade

Tavi Nathanson et al.Nov 17, 2016
+8
E
A
T
Abstract Immune checkpoint inhibitors are promising treatments for patients with a variety of malignancies. Toward understanding the determinants of response to immune checkpoint inhibitors, it was previously demonstrated that somatic mutation burden is associated with benefit and a hypothesis was posited that neoantigen homology to pathogens may in part explain the link between somatic mutations and response. To further examine this hypothesis, we reanalyzed cancer exome data obtained from a previously published study of 64 melanoma patients treated with CTLA-4 blockade and a new dataset of RNA-Seq data from 24 of those patients. We found that the predictive accuracy does not increase as analysis narrows from somatic mutation burden to predicted MHC Class I neoantigens, expressed neoantigens, or homology to pathogens. Further, the association between somatic mutation burden and response is only found when examining samples obtained prior to treatment. Neoantigen and expressed neoantigen burden are also associated with response, but neither is more predictive than somatic mutation burden. Neither the previously-described tetrapeptide signature nor an updated method to evaluate neoepitope homology to pathogens were more predictive than mutation burden.
0
Citation3
0
Save
Load More