CM
Clay Martin
Author with expertise in Comprehensive Integration of Single-Cell Transcriptomic Data
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
7
(71% Open Access)
Cited by:
2,873
h-index:
9
/
i10-index:
9
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

A transcriptomic atlas of mouse cerebellar cortex comprehensively defines cell types

Velina Kozareva et al.Oct 6, 2021
Abstract The cerebellar cortex is a well-studied brain structure with diverse roles in motor learning, coordination, cognition and autonomic regulation. However, a complete inventory of cerebellar cell types is currently lacking. Here, using recent advances in high-throughput transcriptional profiling 1–3 , we molecularly define cell types across individual lobules of the adult mouse cerebellum. Purkinje neurons showed considerable regional specialization, with the greatest diversity occurring in the posterior lobules. For several types of cerebellar interneuron, the molecular variation within each type was more continuous, rather than discrete. In particular, for the unipolar brush cells—an interneuron population previously subdivided into discrete populations—the continuous variation in gene expression was associated with a graded continuum of electrophysiological properties. Notably, we found that molecular layer interneurons were composed of two molecularly and functionally distinct types. Both types show a continuum of morphological variation through the thickness of the molecular layer, but electrophysiological recordings revealed marked differences between the two types in spontaneous firing, excitability and electrical coupling. Together, these findings provide a comprehensive cellular atlas of the cerebellar cortex, and outline a methodological and conceptual framework for the integration of molecular, morphological and physiological ontologies for defining brain cell types.
0
Citation221
0
Save
0

A transcriptomic atlas of the mouse cerebellum reveals regional specializations and novel cell types

Velina Kozareva et al.Mar 5, 2020
The cerebellum is a well-studied brain structure with diverse roles in motor learning, coordination, cognition, and autonomic regulation. Nonetheless, a complete inventory of cerebellar cell types is presently lacking. We used high-throughput transcriptional profiling to molecularly define cell types across individual lobules of the adult mouse cerebellum. Purkinje and granule neurons showed considerable regional specialization, with the greatest diversity occurring in the posterior lobules. For multiple types of cerebellar interneurons, the molecular variation within each type was more continuous, rather than discrete. For the unipolar brush cells (UBCs)—an interneuron population previously subdivided into two discrete populations—the continuous variation in gene expression was associated with a graded continuum of electrophysiological properties. Most surprisingly, we found that molecular layer interneurons (MLIs) were composed of two molecularly and functionally distinct types. Both show a continuum of morphological variation through the thickness of the molecular layer, but electrophysiological recordings revealed marked differences between the two types in spontaneous firing, excitability, and electrical coupling. Together, these findings provide the first comprehensive cellular atlas of the cerebellar cortex, and outline a methodological and conceptual framework for the integration of molecular, morphological, and physiological ontologies for defining brain cell types.
0
Citation45
0
Save
0

Integrative inference of brain cell similarities and differences from single-cell genomics

Joshua Welch et al.Nov 2, 2018
Defining cell types requires integrating diverse measurements from multiple experiments and biological contexts. Recent technological developments in single-cell analysis have enabled high-throughput profiling of gene expression, epigenetic regulation, and spatial relationships amongst cells in complex tissues, but computational approaches that deliver a sensitive and specific joint analysis of these datasets are lacking. We developed LIGER, an algorithm that delineates shared and dataset-specific features of cell identity, allowing flexible modeling of highly heterogeneous single-cell datasets. We demonstrated its broad utility by applying it to four diverse and challenging datasets from human and mouse brain cells. First, we defined both cell-type-specific and sexually dimorphic gene expression in the mouse bed nucleus of the stria terminalis, an anatomically complex brain region that plays important roles in sex-specific behaviors. Second, we analyzed gene expression in the substantia nigra of seven postmortem human subjects, comparing cell states in specific donors, and relating cell types to those in the mouse. Third, we jointly leveraged in situ gene expression and scRNA-seq data to spatially locate fine subtypes of cells present in the mouse frontal cortex. Finally, we integrated mouse cortical scRNA-seq profiles with single-cell DNA methylation signatures, revealing mechanisms of cell-type-specific gene regulation. Integrative analyses using the LIGER algorithm promise to accelerate single-cell investigations of cell-type definition, gene regulation, and disease states.
0

Slide-seq: A Scalable Technology for Measuring Genome-Wide Expression at High Spatial Resolution

Samuel Rodriques et al.Feb 28, 2019
The spatial organization of cells in tissue has a profound influence on their function, yet a high-throughput, genome-wide readout of gene expression with cellular resolution is lacking. Here, we introduce Slide-seq, a highly scalable method that enables facile generation of large volumes of unbiased spatial transcriptomes with 10 micron spatial resolution, comparable to the size of individual cells. In Slide-seq, RNA is transferred from freshly frozen tissue sections onto a surface covered in DNA-barcoded beads with known positions, allowing the spatial locations of the RNA to be inferred by sequencing. To demonstrate Slide-seq's utility, we localized cell types identified by large-scale scRNA-seq datasets within the cerebellum and hippocampus. We next systematically characterized spatial gene expression patterns in the Purkinje layer of mouse cerebellum, identifying new axes of variation across Purkinje cell compartments. Finally, we used Slide-seq to define the temporal evolution of cell-type-specific responses in a mouse model of traumatic brain injury. Slide-seq will accelerate biological discovery by enabling routine, high-resolution spatial mapping of gene expression.
0

Imprinting and DNA methylation in water lily endosperm: implications for seed evolution

Rebecca Povilus et al.Mar 17, 2024
Summary Endosperm is a key evolutionary innovation associated with the origin of angiosperms (flowering plants). This altruistic seed tissue supports the growth and development of the embryo by mediating the relationship of the mother plant as a nutrient source to the compatriot embryo as a nutrient sink. The endosperm is the primary site of gene imprinting in plants (where expression of an allele depends on which parent it was inherited from) and of parent-specific epigenetic modifications like DNA methylation, which are differentially patterned during male and female gamete development 1,2,3,4 . Knowledge of endosperm gene imprinting and epigenetic patterning is derived from experiments performed in a phylogenetically-wide array of monocot and eudicot plants 5,6 . However, information from angiosperm lineages whose origins predate the monocot-eudicot divergence (such as Nymphaeales, water lilies) is extremely limited. Additionally, Nymphaeales are an intriguing lineage to investigate seed genetic and epigenetic phenomena, as it is characterized by diploid endosperm and a maternal storage tissue (perisperm), both of which are unusual across angiosperm diversity 7,8,9,10,11,12 . Here, we examined DNA methylation and genetic imprinting using two reproductively compatible water lily sister-species, Nymphaea thermarum and N. dimorpha . Our results suggest that endosperm hypomethylation and maternally-expressed imprinted genes are an ancestral condition for endosperm, and that other seed characters like seed provisioning strategies, endosperm ploidy, and paternally-expressed imprinted genes might have evolved as coinciding, opposing strategies in the evolutionary dialogue over parental control of offspring development.