AC
Aldo Córdova‐Palomera
Author with expertise in Analysis of Brain Functional Connectivity Networks
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
17
(35% Open Access)
Cited by:
1,012
h-index:
25
/
i10-index:
40
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Brain Heterogeneity in Schizophrenia and Its Association With Polygenic Risk

Dag Alnæs et al.Apr 10, 2019
Between-individual variability in brain structure is determined by gene-environment interactions, possibly reflecting differential sensitivity to environmental and genetic perturbations. Magnetic resonance imaging (MRI) studies have revealed thinner cortices and smaller subcortical volumes in patients with schizophrenia. However, group-level comparisons may mask considerable within-group heterogeneity, which has largely remained unnoticed in the literature.To compare brain structural variability between individuals with schizophrenia and healthy controls and to test whether respective variability reflects the polygenic risk score (PRS) for schizophrenia in an independent sample of healthy controls.This case-control and polygenic risk analysis compared MRI-derived cortical thickness and subcortical volumes between healthy controls and patients with schizophrenia across 16 cohorts and tested for associations between PRS and MRI features in a control cohort from the UK Biobank. Data were collected from October 27, 2004, through April 12, 2018, and analyzed from December 3, 2017, through August 1, 2018.Mean and dispersion parameters were estimated using double generalized linear models. Vertex-wise analysis was used to assess cortical thickness, and regions-of-interest analyses were used to assess total cortical volume, total surface area, and white matter, subcortical, and hippocampal subfield volumes. Follow-up analyses included within-sample analysis, test of robustness of the PRS threshold, population covariates, outlier removal, and control for image quality.A comparison of 1151 patients with schizophrenia (mean [SD] age, 33.8 [10.6] years; 68.6% male [n = 790] and 31.4% female [n = 361]) with 2010 healthy controls (mean [SD] age, 32.6 [10.4] years; 56.0% male [n = 1126] and 44.0% female [n = 884]) revealed higher heterogeneity in schizophrenia for cortical thickness and area (t = 3.34), cortical (t = 3.24) and ventricle (t range, 3.15-5.78) volumes, and hippocampal subfields (t range, 2.32-3.55). In the UK Biobank sample of 12 490 participants (mean [SD] age, 55.9 [7.5] years; 48.2% male [n = 6025] and 51.8% female [n = 6465]), higher PRS was associated with thinner frontal and temporal cortices and smaller left CA2/3 (t = -3.00) but was not significantly associated with dispersion.This study suggests that schizophrenia is associated with substantial brain structural heterogeneity beyond the mean differences. These findings may reflect higher sensitivity to environmental and genetic perturbations in patients, supporting the heterogeneous nature of schizophrenia. A higher PRS was associated with thinner frontotemporal cortices and smaller hippocampal subfield volume, but not heterogeneity. This finding suggests that brain variability in schizophrenia results from interactions between environmental and genetic factors that are not captured by the PRS. Factors contributing to heterogeneity in frontotemporal cortices and hippocampus are key to furthering our understanding of how genetic and environmental factors shape brain biology in schizophrenia.
0
Citation236
0
Save
0

Mapping Cortical Brain Asymmetry in 17,141 Healthy Individuals Worldwide via the ENIGMA Consortium

Xiangzhen Kong et al.Oct 1, 2017
Abstract Hemispheric asymmetry is a cardinal feature of human brain organization. Altered brain asymmetry has also been linked to some cognitive and neuropsychiatric disorders. Here the ENIGMA consortium presents the largest ever analysis of cerebral cortical asymmetry and its variability across individuals. Cortical thickness and surface area were assessed in MRI scans of 17,141 healthy individuals from 99 datasets worldwide. Results revealed widespread asymmetries at both hemispheric and regional levels, with a generally thicker cortex but smaller surface area in the left hemisphere relative to the right. Regionally, asymmetries of cortical thickness and/or surface area were found in the inferior frontal gyrus, transverse temporal gyrus, parahippocampal gyrus, and entorhinal cortex. These regions are involved in lateralized functions, including language and visuospatial processing. In addition to population-level asymmetries, variability in brain asymmetry was related to sex, age, and brain size (indexed by intracranial volume). Interestingly, we did not find significant associations between asymmetries and handedness. Finally, with two independent pedigree datasets ( N = 1,443 and 1,113, respectively), we found several asymmetries showing modest but highly reliable heritability. The structural asymmetries identified, and their variabilities and heritability provide a reference resource for future studies on the genetic basis of brain asymmetry and altered laterality in cognitive, neurological, and psychiatric disorders. Significance Statement Left-right asymmetry is a key feature of the human brain's structure and function. It remains unclear which cortical regions are asymmetrical on average in the population, and how biological factors such as age, sex and genetic variation affect these asymmetries. Here we describe by far the largest ever study of cerebral cortical brain asymmetry, based on data from 17,141 participants. We found a global anterior-posterior 'torque' pattern in cortical thickness, together with various regional asymmetries at the population level, which have not been previously described, as well as effects of age, sex, and heritability estimates. From these data, we have created an on-line resource that will serve future studies of human brain anatomy in health and disease.
0

Learning epistatic polygenic phenotypes with Boolean interactions

Merle Behr et al.Nov 25, 2020
Abstract Detecting epistatic drivers of human phenotypes is a considerable challenge. Traditional approaches use regression to sequentially test multiplicative interaction terms involving pairs of genetic variants. For higher-order interactions and genome-wide large-scale data, this strategy is computationally intractable. Moreover, multiplicative terms used in regression modeling may not capture the form of biological interactions. Building on the Predictability, Computability, Stability (PCS) framework, we introduce the epiTree pipeline to extract higher-order interactions from genomic data using tree-based models. The epiTree pipeline first selects a set of variants derived from tissue-specific estimates of gene expression. Next, it uses iterative random forests (iRF) to search training data for candidate Boolean interactions (pairwise and higher-order). We derive significance tests for interactions, based on a stabilized likelihood ratio test, by simulating Boolean tree-structured null (no epistasis) and alternative (epistasis) distributions on hold-out test data. Finally, our pipeline computes PCS epistasis p-values that probabilisticly quantify improvement in prediction accuracy via bootstrap sampling on the test set. We validate the epiTree pipeline in two case studies using data from the UK Biobank: predicting red hair and multiple sclerosis (MS). In the case of predicting red hair, epiTree recovers known epistatic interactions surrounding MC1R and novel interactions, representing non-linearities not captured by logistic regression models. In the case of predicting MS, a more complex phenotype than red hair, epiTree rankings prioritize novel interactions surrounding HLA-DRB1 , a variant previously associated with MS in several populations. Taken together, these results highlight the potential for epiTree rankings to help reduce the design space for follow up experiments.
0
Citation5
0
Save
0

The dark side of the mean: brain structural heterogeneity in schizophrenia and its polygenic risk

Dag Alnæs et al.Sep 4, 2018
Abstract Importance Between-subject variability in brain structure is determined by gene-environment interactions, possibly reflecting differential sensitivity to environmental and genetic perturbations. Magnetic resonance imaging (MRI) studies have revealed thinner cortices and smaller subcortical volumes in patients. However, such group-level comparisons may mask considerable within-group heterogeneity, which has largely remained unnoticed in the literature Objective To compare brain structural variability between individuals with SZ and healthy controls (HC) and to test if respective variability reflects the polygenic risk for SZ (PRS) in HC. Design, Setting, and Participants We compared MRI derived cortical thickness and subcortical volumes between 2,010 healthy controls and 1,151 patients with SZ across 16 cohorts. Secondly, we tested for associations between PRS and MRI features in 12,490 participants from UK Biobank. Main Outcomes and Measures We modeled mean and dispersion effects of SZ and PRS using double generalized linear models. We performed vertex-wise analyses for thickness, and region-of-interest analysis for cortical, subcortical and hippocampal subfield volumes. Follow-up analyses included within-sample analysis, controlling for intracranial volume and population covariates, test of robustness of PRS threshold, and outlier removal. Results Compared to controls, patients with SZ showed higher heterogeneity in cortical thickness, cortical and ventricle volumes, and hippocampal subfields. Higher PRS was associated with thinner frontal and temporal cortices, as well as smaller left CA2/3, but was not significantly associated with dispersion. Conclusion and relevance SZ is associated with substantial brain structural heterogeneity beyond the mean differences. These findings possibly reflect higher differential sensitivity to environmental and genetic perturbations in patients, supporting the heterogeneous nature of SZ. Higher PRS for SZ was associated with thinner fronto-temporal cortices and smaller subcortical volumes, but there were no significant associations with the heterogeneity in these measures, i.e. the variability among individuals with high PRS were comparable to the variability among individuals with low PRS. This suggests that brain variability in SZ results from interactions between environmental and genetic factors that are not captured by the PGR. Factors contributing to heterogeneity in fronto-temporal cortices and hippocampus are thus key to further our understanding of how genetic and environmental factors shape brain biology in SZ. Key Points Question: Is schizophrenia and its polygenic risk associated with brain structural heterogeneity in addition to mean changes? Findings: In a sample of 1151 patients and 2010 controls, schizophrenia was associated with increased heterogeneity in fronto-temporal thickness, cortical, ventricle, and hippocampal volumes, besides robust reductions in mean estimates. In an independent sample of 12,490 controls, polygenic risk for schizophrenia was associated with thinner fronto-temporal cortices and smaller CA2/3 of the left hippocampus, but not with heterogeneity. Meaning: Schizophrenia is associated with increased inter-individual differences in brainstructure, possibly reflecting clinical heterogeneity, gene-environment interactions, or secondary disease factors.
0
Citation1
0
Save
0

Brain scans from 21297 individuals reveal the genetic architecture of hippocampal subfield volumes

Dennis Meer et al.Apr 11, 2018
The hippocampus is a heterogeneous structure, comprising histologically distinguishable subfields. These subfields are differentially involved in memory consolidation, spatial navigation and pattern separation, complex functions often impaired in individuals with brain disorders characterized by reduced hippocampal volume, including Alzheimer's disease (AD) and schizophrenia. Given the structural and functional heterogeneity of the hippocampal formation, we sought to characterize the subfields' genetic architecture. T1-weighted brain scans (n=21297, 16 cohorts) were processed with the hippocampal subfields algorithm in FreeSurfer v6.0. We ran a genome-wide association analysis on each subfield, covarying for total hippocampal volume. We further calculated the single nucleotide polymorphism (SNP)-based heritability of twelve subfields, as well as their genetic correlation with each other, with other structural brain features, and with AD and schizophrenia. All outcome measures were corrected for age, sex, and intracranial volume. We found 15 unique genome-wide significant loci across six subfields, of which eight had not been previously linked to the hippocampus. Top SNPs were mapped to genes associated with neuronal differentiation, locomotor behaviour, schizophrenia and AD. The volumes of all the subfields were estimated to be heritable (h2 from .14 to .27, all p< 1x10-16) and clustered together based on their genetic correlations compared to other structural brain features. There was also evidence of genetic overlap of subicular subfield volumes with schizophrenia. We conclude that hippocampal subfields have partly distinct genetic determinants associated with specific biological processes and traits. Taking into account this specificity may increase our understanding of hippocampal neurobiology and associated pathologies.
0

Association between the 4p16 genomic locus and different types of congenital heart disease: results from adult survivors in the UK Biobank

Aldo Córdova‐Palomera et al.Sep 6, 2019
Congenital heart disease is the most common birth defect in newborns and the leading cause of death in infancy, affecting nearly 1% of live births. A locus in chromosome 4p16, adjacent to MSX1 and STX18, has been associated with atrial septal defects (ASD) in multiple European and Chinese cohorts. Here, genotyping data from the UK Biobank was used to test for associations between this locus and congenital heart disease in adult survivors of left ventricular outflow tract obstruction (n=164) and ASD (n=223), with a control sample of 332,788 individuals, and a meta-analysis of the new and existing ASD data was performed. The results show an association between the previously reported markers at 4p16 and risk for either ASD or left ventricular outflow tract obstruction, with effect sizes similar to the published data (OR between 1.27-1.45; all p<0.05). Differences in allele frequencies remained constant through the studied age range (40-70 years), indicating that the variants themselves do not drive lethal genetic defects. Meta-analysis shows an OR of 1.35 (95% CI: 1.25-1.46; p<10-4) for the association with ASD. The findings show that the genetic associations with ASD can be generalized to adult survivors of both ASD and left ventricular lesions. Although the 4p16 associations are statistically compelling, the mentioned alleles confer only a small risk for disease and their frequencies in this adult sample are the same as in children, likely limiting their clinical significance. Further epidemiological and functional studies may elicit factors triggering disease in interaction with the risk alleles.
Load More