ND
Nhat Doan
Author with expertise in Diffusion Magnetic Resonance Imaging
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
32
(53% Open Access)
Cited by:
3,114
h-index:
42
/
i10-index:
65
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Cortical abnormalities in bipolar disorder: an MRI analysis of 6503 individuals from the ENIGMA Bipolar Disorder Working Group

Derrek Hibar et al.May 2, 2017
Despite decades of research, the pathophysiology of bipolar disorder (BD) is still not well understood. Structural brain differences have been associated with BD, but results from neuroimaging studies have been inconsistent. To address this, we performed the largest study to date of cortical gray matter thickness and surface area measures from brain magnetic resonance imaging scans of 6503 individuals including 1837 unrelated adults with BD and 2582 unrelated healthy controls for group differences while also examining the effects of commonly prescribed medications, age of illness onset, history of psychosis, mood state, age and sex differences on cortical regions. In BD, cortical gray matter was thinner in frontal, temporal and parietal regions of both brain hemispheres. BD had the strongest effects on left pars opercularis (Cohen’s d=−0.293; P=1.71 × 10−21), left fusiform gyrus (d=−0.288; P=8.25 × 10−21) and left rostral middle frontal cortex (d=−0.276; P=2.99 × 10−19). Longer duration of illness (after accounting for age at the time of scanning) was associated with reduced cortical thickness in frontal, medial parietal and occipital regions. We found that several commonly prescribed medications, including lithium, antiepileptic and antipsychotic treatment showed significant associations with cortical thickness and surface area, even after accounting for patients who received multiple medications. We found evidence of reduced cortical surface area associated with a history of psychosis but no associations with mood state at the time of scanning. Our analysis revealed previously undetected associations and provides an extensive analysis of potential confounding variables in neuroimaging studies of BD.
0

Subcortical volumetric abnormalities in bipolar disorder

Derrek Hibar et al.Feb 9, 2016
Considerable uncertainty exists about the defining brain changes associated with bipolar disorder (BD). Understanding and quantifying the sources of uncertainty can help generate novel clinical hypotheses about etiology and assist in the development of biomarkers for indexing disease progression and prognosis. Here we were interested in quantifying case–control differences in intracranial volume (ICV) and each of eight subcortical brain measures: nucleus accumbens, amygdala, caudate, hippocampus, globus pallidus, putamen, thalamus, lateral ventricles. In a large study of 1710 BD patients and 2594 healthy controls, we found consistent volumetric reductions in BD patients for mean hippocampus (Cohen’s d=−0.232; P=3.50 × 10−7) and thalamus (d=−0.148; P=4.27 × 10−3) and enlarged lateral ventricles (d=−0.260; P=3.93 × 10−5) in patients. No significant effect of age at illness onset was detected. Stratifying patients based on clinical subtype (BD type I or type II) revealed that BDI patients had significantly larger lateral ventricles and smaller hippocampus and amygdala than controls. However, when comparing BDI and BDII patients directly, we did not detect any significant differences in brain volume. This likely represents similar etiology between BD subtype classifications. Exploratory analyses revealed significantly larger thalamic volumes in patients taking lithium compared with patients not taking lithium. We detected no significant differences between BDII patients and controls in the largest such comparison to date. Findings in this study should be interpreted with caution and with careful consideration of the limitations inherent to meta-analyzed neuroimaging comparisons.
0
Citation446
0
Save
0

Mapping the Heterogeneous Phenotype of Schizophrenia and Bipolar Disorder Using Normative Models

Thomas Wolfers et al.Oct 10, 2018
Schizophrenia and bipolar disorder are severe and complex brain disorders characterized by substantial clinical and biological heterogeneity. However, case-control studies often ignore such heterogeneity through their focus on the average patient, which may be the core reason for a lack of robust biomarkers indicative of an individual's treatment response and outcome.To investigate the degree to which case-control analyses disguise interindividual differences in brain structure among patients with schizophrenia and bipolar disorder and to map the brain alterations linked to these disorders at the level of individual patients.This study used cross-sectional, T1-weighted magnetic resonance imaging data from participants recruited for the Thematically Organized Psychosis study from October 27, 2004, to October 17, 2012. Data were reanalyzed in 2017 and 2018. Patients were recruited from inpatient and outpatient clinics in the Oslo area of Norway, and healthy individuals from the same catchment area were drawn from the national population registry.Interindividual differences in brain structure among patients with schizophrenia and bipolar disorder. Voxel-based morphometry maps were computed, which were used for normative modeling to map the range of interindividual differences in brain structure.This study included 218 patients with schizophrenia spectrum disorders (mean [SD] age, 30 [9.3] years; 126 [57.8%] male), of whom 163 had schizophrenia (mean [SD] age, 31 [8.7] years; 105 [64.4%] male) and 190 had bipolar disorder (mean [SD] age, 34 [11.3] years; 79 [41.6%] male), and 256 healthy individuals (mean [SD] age, 34 [9.5] years; 140 [54.7%] male). At the level of the individual, deviations from the normative model were frequent in both disorders but highly heterogeneous. Overlap of more than 2% among patients was observed in only a few loci, primarily in frontal, temporal, and cerebellar regions. The proportion of alterations was associated with diagnosis and cognitive and clinical characteristics within clinical groups. Patients with schizophrenia, on average, had significantly reduced gray matter in frontal regions, cerebellum, and temporal cortex. In patients with bipolar disorder, mean deviations were primarily present in cerebellar regions.This study found that group-level differences disguised biological heterogeneity and interindividual differences among patients with the same diagnosis. This finding suggests that the idea of the average patient is a noninformative construct in psychiatry that falls apart when mapping abnormalities at the level of the individual patient. This study presents a workable route toward precision medicine in psychiatry.
0

Brain Heterogeneity in Schizophrenia and Its Association With Polygenic Risk

Dag Alnæs et al.Apr 10, 2019
Between-individual variability in brain structure is determined by gene-environment interactions, possibly reflecting differential sensitivity to environmental and genetic perturbations. Magnetic resonance imaging (MRI) studies have revealed thinner cortices and smaller subcortical volumes in patients with schizophrenia. However, group-level comparisons may mask considerable within-group heterogeneity, which has largely remained unnoticed in the literature.To compare brain structural variability between individuals with schizophrenia and healthy controls and to test whether respective variability reflects the polygenic risk score (PRS) for schizophrenia in an independent sample of healthy controls.This case-control and polygenic risk analysis compared MRI-derived cortical thickness and subcortical volumes between healthy controls and patients with schizophrenia across 16 cohorts and tested for associations between PRS and MRI features in a control cohort from the UK Biobank. Data were collected from October 27, 2004, through April 12, 2018, and analyzed from December 3, 2017, through August 1, 2018.Mean and dispersion parameters were estimated using double generalized linear models. Vertex-wise analysis was used to assess cortical thickness, and regions-of-interest analyses were used to assess total cortical volume, total surface area, and white matter, subcortical, and hippocampal subfield volumes. Follow-up analyses included within-sample analysis, test of robustness of the PRS threshold, population covariates, outlier removal, and control for image quality.A comparison of 1151 patients with schizophrenia (mean [SD] age, 33.8 [10.6] years; 68.6% male [n = 790] and 31.4% female [n = 361]) with 2010 healthy controls (mean [SD] age, 32.6 [10.4] years; 56.0% male [n = 1126] and 44.0% female [n = 884]) revealed higher heterogeneity in schizophrenia for cortical thickness and area (t = 3.34), cortical (t = 3.24) and ventricle (t range, 3.15-5.78) volumes, and hippocampal subfields (t range, 2.32-3.55). In the UK Biobank sample of 12 490 participants (mean [SD] age, 55.9 [7.5] years; 48.2% male [n = 6025] and 51.8% female [n = 6465]), higher PRS was associated with thinner frontal and temporal cortices and smaller left CA2/3 (t = -3.00) but was not significantly associated with dispersion.This study suggests that schizophrenia is associated with substantial brain structural heterogeneity beyond the mean differences. These findings may reflect higher sensitivity to environmental and genetic perturbations in patients, supporting the heterogeneous nature of schizophrenia. A higher PRS was associated with thinner frontotemporal cortices and smaller hippocampal subfield volume, but not heterogeneity. This finding suggests that brain variability in schizophrenia results from interactions between environmental and genetic factors that are not captured by the PRS. Factors contributing to heterogeneity in frontotemporal cortices and hippocampus are key to furthering our understanding of how genetic and environmental factors shape brain biology in schizophrenia.
0
Citation236
0
Save
0

Cortical thickness across the lifespan: Data from 17,075 healthy individuals aged 3–90 years

Sophia Frangou et al.Feb 17, 2021
Delineating the association of age and cortical thickness in healthy individuals is critical given the association of cortical thickness with cognition and behavior. Previous research has shown that robust estimates of the association between age and brain morphometry require large-scale studies. In response, we used cross-sectional data from 17,075 individuals aged 3-90 years from the Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA) Consortium to infer age-related changes in cortical thickness. We used fractional polynomial (FP) regression to quantify the association between age and cortical thickness, and we computed normalized growth centiles using the parametric Lambda, Mu, and Sigma method. Interindividual variability was estimated using meta-analysis and one-way analysis of variance. For most regions, their highest cortical thickness value was observed in childhood. Age and cortical thickness showed a negative association; the slope was steeper up to the third decade of life and more gradual thereafter; notable exceptions to this general pattern were entorhinal, temporopolar, and anterior cingulate cortices. Interindividual variability was largest in temporal and frontal regions across the lifespan. Age and its FP combinations explained up to 59% variance in cortical thickness. These results may form the basis of further investigation on normative deviation in cortical thickness and its significance for behavioral and cognitive outcomes.
0

Genetic Determinants of Cortical Structure (Thickness, Surface Area and Volumes) among Disease Free Adults in the CHARGE Consortium

Ivana Kolčić et al.Sep 9, 2018
Abstract Cortical thickness, surface area and volumes (MRI cortical measures) vary with age and cognitive function, and in neurological and psychiatric diseases. We examined heritability, genetic correlations and genome-wide associations of cortical measures across the whole cortex, and in 34 anatomically predefined regions. Our discovery sample comprised 22,822 individuals from 20 cohorts within the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium and the United Kingdom Biobank. Significant associations were replicated in the Enhancing Neuroimaging Genetics through Meta-analysis (ENIGMA) consortium, and their biological implications explored using bioinformatic annotation and pathway analyses. We identified genetic heterogeneity between cortical measures and brain regions, and 161 genome-wide significant associations pointing to wnt/β-catenin, TGF-β and sonic hedgehog pathways. There was enrichment for genes involved in anthropometric traits, hindbrain development, vascular and neurodegenerative disease and psychiatric conditions. These data are a rich resource for studies of the biological mechanisms behind cortical development and aging.
0
Citation24
0
Save
Load More