PF
Paola Fuentes‐Claramonte
Author with expertise in Analysis of Brain Functional Connectivity Networks
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
11
(91% Open Access)
Cited by:
522
h-index:
25
/
i10-index:
47
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

State and Training Effects of Mindfulness Meditation on Brain Networks Reflect Neuronal Mechanisms of Its Antidepressant Effect

Chuan-Chih Yang et al.Jan 1, 2016
The topic of investigating how mindfulness meditation training can have antidepressant effects via plastic changes in both resting state and meditation state brain activity is important in the rapidly emerging field of neuroplasticity. In the present study, we used a longitudinal design investigating resting state fMRI both before and after 40 days of meditation training in 13 novices. After training, we compared differences in network connectivity between rest and meditation using common resting state functional connectivity methods. Interregional methods were paired with local measures such as Regional Homogeneity. As expected, significant differences in functional connectivity both between states (rest versus meditation) and between time points (before versus after training) were observed. During meditation, the internal consistency in the precuneus and the temporoparietal junction increased, while the internal consistency of frontal brain regions decreased. A follow-up analysis of regional connectivity of the dorsal anterior cingulate cortex further revealed reduced connectivity with anterior insula during meditation. After meditation training, reduced resting state functional connectivity between the pregenual anterior cingulate and dorsal medical prefrontal cortex was observed. Most importantly, significantly reduced depression/anxiety scores were observed after training. Hence, these findings suggest that mindfulness meditation might be of therapeutic use by inducing plasticity related network changes altering the neuronal basis of affective disorders such as depression.
0
Citation275
0
Save
0

Cortical thickness across the lifespan: Data from 17,075 healthy individuals aged 3–90 years

Sophia Frangou et al.Feb 17, 2021
Delineating the association of age and cortical thickness in healthy individuals is critical given the association of cortical thickness with cognition and behavior. Previous research has shown that robust estimates of the association between age and brain morphometry require large-scale studies. In response, we used cross-sectional data from 17,075 individuals aged 3-90 years from the Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA) Consortium to infer age-related changes in cortical thickness. We used fractional polynomial (FP) regression to quantify the association between age and cortical thickness, and we computed normalized growth centiles using the parametric Lambda, Mu, and Sigma method. Interindividual variability was estimated using meta-analysis and one-way analysis of variance. For most regions, their highest cortical thickness value was observed in childhood. Age and cortical thickness showed a negative association; the slope was steeper up to the third decade of life and more gradual thereafter; notable exceptions to this general pattern were entorhinal, temporopolar, and anterior cingulate cortices. Interindividual variability was largest in temporal and frontal regions across the lifespan. Age and its FP combinations explained up to 59% variance in cortical thickness. These results may form the basis of further investigation on normative deviation in cortical thickness and its significance for behavioral and cognitive outcomes.
0

Mapping Cortical Brain Asymmetry in 17,141 Healthy Individuals Worldwide via the ENIGMA Consortium

Xiangzhen Kong et al.Oct 1, 2017
Abstract Hemispheric asymmetry is a cardinal feature of human brain organization. Altered brain asymmetry has also been linked to some cognitive and neuropsychiatric disorders. Here the ENIGMA consortium presents the largest ever analysis of cerebral cortical asymmetry and its variability across individuals. Cortical thickness and surface area were assessed in MRI scans of 17,141 healthy individuals from 99 datasets worldwide. Results revealed widespread asymmetries at both hemispheric and regional levels, with a generally thicker cortex but smaller surface area in the left hemisphere relative to the right. Regionally, asymmetries of cortical thickness and/or surface area were found in the inferior frontal gyrus, transverse temporal gyrus, parahippocampal gyrus, and entorhinal cortex. These regions are involved in lateralized functions, including language and visuospatial processing. In addition to population-level asymmetries, variability in brain asymmetry was related to sex, age, and brain size (indexed by intracranial volume). Interestingly, we did not find significant associations between asymmetries and handedness. Finally, with two independent pedigree datasets ( N = 1,443 and 1,113, respectively), we found several asymmetries showing modest but highly reliable heritability. The structural asymmetries identified, and their variabilities and heritability provide a reference resource for future studies on the genetic basis of brain asymmetry and altered laterality in cognitive, neurological, and psychiatric disorders. Significance Statement Left-right asymmetry is a key feature of the human brain's structure and function. It remains unclear which cortical regions are asymmetrical on average in the population, and how biological factors such as age, sex and genetic variation affect these asymmetries. Here we describe by far the largest ever study of cerebral cortical brain asymmetry, based on data from 17,141 participants. We found a global anterior-posterior 'torque' pattern in cortical thickness, together with various regional asymmetries at the population level, which have not been previously described, as well as effects of age, sex, and heritability estimates. From these data, we have created an on-line resource that will serve future studies of human brain anatomy in health and disease.
34

Subcortical Volume Trajectories across the Lifespan: Data from 18,605 healthy individuals aged 3-90 years

Danai Dima et al.May 7, 2020
Abstract Age has a major effect on brain volume. However, the normative studies available are constrained by small sample sizes, restricted age coverage and significant methodological variability. These limitations introduce inconsistencies and may obscure or distort the lifespan trajectories of brain morphometry. In response, we capitalised on the resources of the Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA) Consortium to examine the age-related morphometric trajectories of the ventricles, the basal ganglia (caudate, putamen, pallidum, and nucleus accumbens), the thalamus, hippocampus and amygdala using magnetic resonance imaging data obtained from 18,605 individuals aged 3-90 years. All subcortical structure volumes were at their maximum early in life; the volume of the basal ganglia showed a gradual monotonic decline thereafter while the volumes of the thalamus, amygdala and the hippocampus remained largely stable (with some degree of decline in thalamus) until the sixth decade of life followed by a steep decline thereafter. The lateral ventricles showed a trajectory of continuous enlargement throughout the lifespan. Significant age-related increase in inter-individual variability was found for the hippocampus and amygdala and the lateral ventricles. These results were robust to potential confounders and could be used to derive risk predictions for the early identification of diverse clinical phenotypes.
16
7

A Large-Scale ENIGMA Multisite Replication Study of Brain Age in Depression

Laura Han et al.Aug 29, 2022
ABSTRACT Background Several studies have evaluated whether depressed persons have older appearing brains than their nondepressed peers. However, the estimated neuroimaging-derived “brain age gap” has varied from study to study, likely driven by differences in training and testing sample (size), age range, and used modality/features. To validate our previously developed ENIGMA brain age model and the identified brain age gap, we aim to replicate the presence and effect size estimate previously found in the largest study in depression to date (N=2,126 controls & N=2,675 cases; +1.08 years [SE 0.22], Cohen’s d=0.14, 95% CI: 0.08-0.20), in independent cohorts that were not part of the original study. Methods A previously trained brain age model ( www.photon-ai.com/enigma_brainage ) based on 77 FreeSurfer brain regions of interest was used to obtain unbiased brain age predictions in 751 controls and 766 persons with depression (18-75 years) from 13 new cohorts collected from 20 different scanners. Results Our ENIGMA MDD brain age model generalized reasonably well to controls from the new cohorts (predicted age vs. age: r = 0.73, R 2 =0.47, MAE=7.50 years), although the performance varied from cohort to cohort. In these new cohorts, on average, depressed persons showed a significantly higher brain age gap of +1 year (SE 0.35) (Cohen’s d□=□□.15, 95% CI: 0.05–0.25) compared with controls, highly similar to our previous finding. Conclusions This study further validates our previously developed ENIGMA brain age algorithm. Importantly, we replicated the brain age gap in depression with a comparable effect size. Thus, two large-scale independent mega-analyses across in total 32 cohorts and >3,400 patients and >2,800 controls worldwide show reliable but subtle effects of brain aging in adult depression.
79

Cortical Thickness Trajectories across the Lifespan: Data from 17,075 healthy individuals aged 3-90 years

Sophia Frangou et al.May 7, 2020
Abstract Delineating age-related cortical trajectories in healthy individuals is critical given the association of cortical thickness with cognition and behaviour. Previous research has shown that deriving robust estimates of age-related brain morphometric changes requires large-scale studies. In response, we conducted a large-scale analysis of cortical thickness in 17,075 individuals aged 3-90 years by pooling data through the Lifespan Working group of the Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA) Consortium. We used fractional polynomial (FP) regression to characterize age-related trajectories in cortical thickness, and we computed normalized growth centiles using the parametric Lambda, Mu, and Sigma (LMS) method. Inter-individual variability was estimated using meta-analysis and one-way analysis of variance. Overall, cortical thickness peaked in childhood and had a steep decrease during the first 2-3 decades of life; thereafter, it showed a gradual monotonic decrease which was steeper in men than in women particularly in middle-life. Notable exceptions to this general pattern were entorhinal, temporopolar and anterior cingulate cortices. Inter-individual variability was largest in temporal and frontal regions across the lifespan. Age and its FP combinations explained up to 59% variance in cortical thickness. These results reconcile uncertainties about age-related trajectories of cortical thickness; the centile values provide estimates of normative variance in cortical thickness, and may assist in detecting abnormal deviations in cortical thickness, and associated behavioural, cognitive and clinical outcomes.
Load More