MB
Miriam Bayer
Author with expertise in Bacterial Biofilms and Quorum Sensing Mechanisms
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
2
(50% Open Access)
Cited by:
2
h-index:
3
/
i10-index:
2
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Vibrio cholerae biofilm dispersal regulator causes cell release from matrix through type IV pilus retraction

Praveen Singh et al.May 2, 2021
+10
P
D
P
Abstract The extracellular matrix is a defining feature of bacterial biofilms and provides structural stability to the community by binding cells to the surface and to each other. Transitions between bacterial biofilm initiation, growth, and dispersion require different regulatory programs, all of which result in modifications to the extracellular matrix composition, abundance, or functionality. However, the mechanisms by which individual cells in biofilms disengage from the matrix to enable their departure during biofilm dispersal are unclear. Here, we investigated active biofilm dispersal of Vibrio cholerae during nutrient starvation, resulting in the discovery of the conserved Vibrio biofilm dispersal regulator VbdR. We show that VbdR triggers biofilm dispersal by controlling cellular release from the biofilm matrix, which is achieved by inducing the retraction of the mannose-sensitive hemagglutinin (MSHA) type IV pili and the expression of a matrix protease IvaP. We further show that MSHA pili have numerous binding partners in the matrix and that the joint effect of MSHA pilus retraction and IvaP activity is necessary and sufficient for causing biofilm dispersal. These results highlight the crucial role of type IV pilus dynamics during biofilm dispersal and provide a new target for controlling V. cholerae biofilm abundance through the induction and manipulation of biofilm dispersal.
0
Citation2
0
Save
0

BiofilmQ, a software tool for quantitative image analysis of microbial biofilm communities

Raimo Hartmann et al.Aug 15, 2019
+14
E
H
R
Biofilms are now considered to be the most abundant form of microbial life on Earth, playing critical roles in biogeochemical cycles, agriculture, and health care. Phenotypic and genotypic variations in biofilms generally occur in three-dimensional space and time, and biofilms are therefore often investigated using microscopy. However, the quantitative analysis of microscopy images presents a key obstacle in phenotyping biofilm communities and single-cell heterogeneity inside biofilms. Here, we present BiofilmQ, a comprehensive image cytometry software tool for the automated high-throughput quantification and visualization of 3D and 2D community properties in space and time. Using BiofilmQ does not require prior knowledge of programming or image processing and provides a user-friendly graphical user interface, resulting in editable publication-quality figures. BiofilmQ is designed for handling fluorescence images of any spatially structured microbial community and growth geometry, including microscopic, mesoscopic, macroscopic colonies and aggregates, as well as bacterial biofilms in the context of eukaryotic hosts.