NE
Nolan Ericson
Author with expertise in Comprehensive Integration of Single-Cell Transcriptomic Data
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
7
(43% Open Access)
Cited by:
5,925
h-index:
17
/
i10-index:
22
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

The metabolome regulates the epigenetic landscape during naive-to-primed human embryonic stem cell transition

Henrik Sperber et al.Nov 16, 2015
For nearly a century developmental biologists have recognized that cells from embryos can differ in their potential to differentiate into distinct cell types. Recently, it has been recognized that embryonic stem cells derived from both mice and humans exhibit two stable yet epigenetically distinct states of pluripotency: naive and primed. We now show that nicotinamide N-methyltransferase (NNMT) and the metabolic state regulate pluripotency in human embryonic stem cells (hESCs). Specifically, in naive hESCs, NNMT and its enzymatic product 1-methylnicotinamide are highly upregulated, and NNMT is required for low S-adenosyl methionine (SAM) levels and the H3K27me3 repressive state. NNMT consumes SAM in naive cells, making it unavailable for histone methylation that represses Wnt and activates the HIF pathway in primed hESCs. These data support the hypothesis that the metabolome regulates the epigenetic landscape of the earliest steps in human development. By comparing the metabolomes, transcriptomes and epigenomes of human pluripotent stem cell lines, Sperber et al. show that interplay between the metabolome and histone modifications drives the metabolic switch from naive to primed pluripotency.
0
Citation372
0
Save
0

Massively parallel digital transcriptional profiling of single cells

Grace Zheng et al.Jul 26, 2016
Characterizing the transcriptome of individual cells is fundamental to understanding complex biological systems. We describe a droplet-based system that enables 3′ mRNA counting of up to tens of thousands of single cells per sample. Cell encapsulation in droplets takes place in ~6 minutes, with ~50% cell capture efficiency, up to 8 samples at a time. The speed and efficiency allow the processing of precious samples while minimizing stress to cells. To demonstrate the system′s technical performance and its applications, we collected transcriptome data from ~¼ million single cells across 29 samples. First, we validate the sensitivity of the system and its ability to detect rare populations using cell lines and synthetic RNAs. Then, we profile 68k peripheral blood mononuclear cells (PBMCs) to demonstrate the system′s ability to characterize large immune populations. Finally, we use sequence variation in the transcriptome data to determine host and donor chimerism at single cell resolution in bone marrow mononuclear cells (BMMCs) of transplant patients. This analysis enables characterization of the complex interplay between donor and host cells and monitoring of treatment response. This high-throughput system is robust and enables characterization of diverse biological systems with single cell mRNA analysis.