SF
Scot Federman
Author with expertise in RNA Sequencing Data Analysis
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
17
(76% Open Access)
Cited by:
4,609
h-index:
33
/
i10-index:
43
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Actionable Diagnosis of Neuroleptospirosis by Next-Generation Sequencing

Michael Wilson et al.Jun 4, 2014
+19
E
S
M
A 14-year-old boy with severe combined immunodeficiency presented three times to a medical facility over a period of 4 months with fever and headache that progressed to hydrocephalus and status epilepticus necessitating a medically induced coma. Diagnostic workup including brain biopsy was unrevealing. Unbiased next-generation sequencing of the cerebrospinal fluid identified 475 of 3,063,784 sequence reads (0.016%) corresponding to leptospira infection. Clinical assays for leptospirosis were negative. Targeted antimicrobial agents were administered, and the patient was discharged home 32 days later with a status close to his premorbid condition. Polymerase-chain-reaction (PCR) and serologic testing at the Centers for Disease Control and Prevention (CDC) subsequently confirmed evidence of Leptospira santarosai infection.
0

Clinical Metagenomic Sequencing for Diagnosis of Meningitis and Encephalitis

Michael Wilson et al.Jun 12, 2019
+40
T
P
M
Metagenomic next-generation sequencing (NGS) of cerebrospinal fluid (CSF) has the potential to identify a broad range of pathogens in a single test.In a 1-year, multicenter, prospective study, we investigated the usefulness of metagenomic NGS of CSF for the diagnosis of infectious meningitis and encephalitis in hospitalized patients. All positive tests for pathogens on metagenomic NGS were confirmed by orthogonal laboratory testing. Physician feedback was elicited by teleconferences with a clinical microbial sequencing board and by surveys. Clinical effect was evaluated by retrospective chart review.We enrolled 204 pediatric and adult patients at eight hospitals. Patients were severely ill: 48.5% had been admitted to the intensive care unit, and the 30-day mortality among all study patients was 11.3%. A total of 58 infections of the nervous system were diagnosed in 57 patients (27.9%). Among these 58 infections, metagenomic NGS identified 13 (22%) that were not identified by clinical testing at the source hospital. Among the remaining 45 infections (78%), metagenomic NGS made concurrent diagnoses in 19. Of the 26 infections not identified by metagenomic NGS, 11 were diagnosed by serologic testing only, 7 were diagnosed from tissue samples other than CSF, and 8 were negative on metagenomic NGS owing to low titers of pathogens in CSF. A total of 8 of 13 diagnoses made solely by metagenomic NGS had a likely clinical effect, with 7 of 13 guiding treatment.Routine microbiologic testing is often insufficient to detect all neuroinvasive pathogens. In this study, metagenomic NGS of CSF obtained from patients with meningitis or encephalitis improved diagnosis of neurologic infections and provided actionable information in some cases. (Funded by the National Institutes of Health and others; PDAID ClinicalTrials.gov number, NCT02910037.).
0
Citation724
0
Save
0

Transmission, infectivity, and neutralization of a spike L452R SARS-CoV-2 variant

Xianding Deng et al.Apr 21, 2021
+43
M
M
X
We identified an emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant by viral whole-genome sequencing of 2,172 nasal/nasopharyngeal swab samples from 44 counties in California, a state in the western United States. Named B.1.427/B.1.429 to denote its two lineages, the variant emerged in May 2020 and increased from 0% to >50% of sequenced cases from September 2020 to January 2021, showing 18.6%–24% increased transmissibility relative to wild-type circulating strains. The variant carries three mutations in the spike protein, including an L452R substitution. We found 2-fold increased B.1.427/B.1.429 viral shedding in vivo and increased L452R pseudovirus infection of cell cultures and lung organoids, albeit decreased relative to pseudoviruses carrying the N501Y mutation common to variants B.1.1.7, B.1.351, and P.1. Antibody neutralization assays revealed 4.0- to 6.7-fold and 2.0-fold decreases in neutralizing titers from convalescent patients and vaccine recipients, respectively. The increased prevalence of a more transmissible variant in California exhibiting decreased antibody neutralization warrants further investigation.
0
Citation491
0
Save
1

Rapid metagenomic identification of viral pathogens in clinical samples by real-time nanopore sequencing analysis

Alexander Greninger et al.Sep 24, 2015
+13
S
S
A
We report unbiased metagenomic detection of chikungunya virus (CHIKV), Ebola virus (EBOV), and hepatitis C virus (HCV) from four human blood samples by MinION nanopore sequencing coupled to a newly developed, web-based pipeline for real-time bioinformatics analysis on a computational server or laptop (MetaPORE). At titers ranging from 107–108 copies per milliliter, reads to EBOV from two patients with acute hemorrhagic fever and CHIKV from an asymptomatic blood donor were detected within 4 to 10 min of data acquisition, while lower titer HCV virus (1 × 105 copies per milliliter) was detected within 40 min. Analysis of mapped nanopore reads alone, despite an average individual error rate of 24 % (range 8–49 %), permitted identification of the correct viral strain in all four isolates, and 90 % of the genome of CHIKV was recovered with 97–99 % accuracy. Using nanopore sequencing, metagenomic detection of viral pathogens directly from clinical samples was performed within an unprecedented <6 hr sample-to-answer turnaround time, and in a timeframe amenable to actionable clinical and public health diagnostics.
1
Citation489
0
Save
0

A cloud-compatible bioinformatics pipeline for ultrarapid pathogen identification from next-generation sequencing of clinical samples

Samia Naccache et al.Jun 4, 2014
+23
N
S
S
Unbiased next-generation sequencing (NGS) approaches enable comprehensive pathogen detection in the clinical microbiology laboratory and have numerous applications for public health surveillance, outbreak investigation, and the diagnosis of infectious diseases. However, practical deployment of the technology is hindered by the bioinformatics challenge of analyzing results accurately and in a clinically relevant timeframe. Here we describe SURPI (“sequence-based ultrarapid pathogen identification”), a computational pipeline for pathogen identification from complex metagenomic NGS data generated from clinical samples, and demonstrate use of the pipeline in the analysis of 237 clinical samples comprising more than 1.1 billion sequences. Deployable on both cloud-based and standalone servers, SURPI leverages two state-of-the-art aligners for accelerated analyses, SNAP and RAPSearch, which are as accurate as existing bioinformatics tools but orders of magnitude faster in performance. In fast mode, SURPI detects viruses and bacteria by scanning data sets of 7–500 million reads in 11 min to 5 h, while in comprehensive mode, all known microorganisms are identified, followed by de novo assembly and protein homology searches for divergent viruses in 50 min to 16 h. SURPI has also directly contributed to real-time microbial diagnosis in acutely ill patients, underscoring its potential key role in the development of unbiased NGS-based clinical assays in infectious diseases that demand rapid turnaround times.
0
Citation448
0
Save
0

The gene expression signatures of melanoma progression

Christopher Haqq et al.Apr 15, 2005
+11
J
D
C
Because of the paucity of available tissue, little information has previously been available regarding the gene expression profiles of primary melanomas. To understand the molecular basis of melanoma progression, we compared the gene expression profiles of a series of nevi, primary melanomas, and melanoma metastases. We found that metastatic melanomas exhibit two dichotomous patterns of gene expression, which unexpectedly reflect gene expression differences already apparent in comparing laser-capture microdissected radial and vertical phases of a large primary melanoma. Unsupervised hierarchical clustering accurately separated nevi and primary melanomas. Multiclass significance analysis of microarrays comparing normal skin, nevi, primary melanomas, and the two types of metastatic melanoma identified 2,602 transcripts that significantly correlated with sample class. These results suggest that melanoma pathogenesis can be understood as a series of distinct molecular events. The gene expression signatures identified here provide the basis for developing new diagnostics and targeting therapies for patients with malignant melanoma.
0
Citation427
0
Save
0

Rapid pathogen detection by metagenomic next-generation sequencing of infected body fluids

Wei Gu et al.Nov 9, 2020
+19
M
X
W
We developed a metagenomic next-generation sequencing (mNGS) test using cell-free DNA from body fluids to identify pathogens. The performance of mNGS testing of 182 body fluids from 160 patients with acute illness was evaluated using two sequencing platforms in comparison to microbiological testing using culture, 16S bacterial PCR and/or 28S–internal transcribed ribosomal gene spacer (28S–ITS) fungal PCR. Test sensitivity and specificity of detection were 79 and 91% for bacteria and 91 and 89% for fungi, respectively, by Illumina sequencing; and 75 and 81% for bacteria and 91 and 100% for fungi, respectively, by nanopore sequencing. In a case series of 12 patients with culture/PCR-negative body fluids but for whom an infectious diagnosis was ultimately established, seven (58%) were mNGS positive. Real-time computational analysis enabled pathogen identification by nanopore sequencing in a median 50-min sequencing and 6-h sample-to-answer time. Rapid mNGS testing is a promising tool for diagnosis of unknown infections from body fluids. A universal method enables high-specificity, unbiased pathogen detection from diverse body fluids using metagenomic sequencing and may accelerate clinical decisions.
0
Citation405
0
Save
1

Laboratory validation of a clinical metagenomic sequencing assay for pathogen detection in cerebrospinal fluid

Steve Miller et al.Apr 16, 2019
+15
E
S
S
Metagenomic next-generation sequencing (mNGS) for pan-pathogen detection has been successfully tested in proof-of-concept case studies in patients with acute illness of unknown etiology but to date has been largely confined to research settings. Here, we developed and validated a clinical mNGS assay for diagnosis of infectious causes of meningitis and encephalitis from cerebrospinal fluid (CSF) in a licensed microbiology laboratory. A customized bioinformatics pipeline, SURPI+, was developed to rapidly analyze mNGS data, generate an automated summary of detected pathogens, and provide a graphical user interface for evaluating and interpreting results. We established quality metrics, threshold values, and limits of detection of 0.2–313 genomic copies or colony forming units per milliliter for each representative organism type. Gross hemolysis and excess host nucleic acid reduced assay sensitivity; however, spiked phages used as internal controls were reliable indicators of sensitivity loss. Diagnostic test accuracy was evaluated by blinded mNGS testing of 95 patient samples, revealing 73% sensitivity and 99% specificity compared to original clinical test results, and 81% positive percent agreement and 99% negative percent agreement after discrepancy analysis. Subsequent mNGS challenge testing of 20 positive CSF samples prospectively collected from a cohort of pediatric patients hospitalized with meningitis, encephalitis, and/or myelitis showed 92% sensitivity and 96% specificity relative to conventional microbiological testing of CSF in identifying the causative pathogen. These results demonstrate the analytic performance of a laboratory-validated mNGS assay for pan-pathogen detection, to be used clinically for diagnosis of neurological infections from CSF.
1
Citation391
0
Save
0

A novel outbreak enterovirus D68 strain associated with acute flaccid myelitis cases in the USA (2012–14): a retrospective cohort study

Alexander Greninger et al.Apr 6, 2015
+16
K
S
A

Summary

Background

 Enterovirus D68 was implicated in a widespread outbreak of severe respiratory illness across the USA in 2014 and has also been reported sporadically in patients with acute flaccid myelitis. We aimed to investigate the association between enterovirus D68 infection and acute flaccid myelitis during the 2014 enterovirus D68 respiratory outbreak in the USA. 

Methods

 Patients with acute flaccid myelitis who presented to two hospitals in Colorado and California, USA, between Nov 24, 2013, and Oct 11, 2014, were included in the study. Additional cases identified from Jan 1, 2012, to Oct 4, 2014, via statewide surveillance were provided by the California Department of Public Health. We investigated the cause of these cases by metagenomic next-generation sequencing, viral genome recovery, and enterovirus D68 phylogenetic analysis. We compared patients with acute flaccid myelitis who were positive for enterovirus D68 with those with acute flaccid myelitis but negative for enterovirus D68 using the two-tailed Fisher's exact test, two-sample unpaired t test, and Mann-Whitney U test. 

Findings

 48 patients were included: 25 with acute flaccid myelitis, two with enterovirus-associated encephalitis, five with enterovirus-D68-associated upper respiratory illness, and 16 with aseptic meningitis or encephalitis who tested positive for enterovirus. Enterovirus D68 was detected in respiratory secretions from seven (64%) of 11 patients comprising two temporally and geographically linked acute flaccid myelitis clusters at the height of the 2014 outbreak, and from 12 (48%) of 25 patients with acute flaccid myelitis overall. Phylogenetic analysis revealed that all enterovirus D68 sequences associated with acute flaccid myelitis grouped into a clade B1 strain that emerged in 2010. Of six coding polymorphisms in the clade B1 enterovirus D68 polyprotein, five were present in neuropathogenic poliovirus or enterovirus D70, or both. One child with acute flaccid myelitis and a sibling with only upper respiratory illness were both infected by identical enterovirus D68 strains. Enterovirus D68 viraemia was identified in a child experiencing acute neurological progression of his paralytic illness. Deep metagenomic sequencing of cerebrospinal fluid from 14 patients with acute flaccid myelitis did not reveal evidence of an alternative infectious cause to enterovirus D68. 

Interpretation

 These findings strengthen the putative association between enterovirus D68 and acute flaccid myelitis and the contention that acute flaccid myelitis is a rare yet severe clinical manifestation of enterovirus D68 infection in susceptible hosts. 

Funding

 National Institutes of Health, University of California, Abbott Laboratories, and the Centers for Disease Control and Prevention.
7

Longitudinal comparison of the developing gut virome in infants and their mothers

William Walters et al.Feb 1, 2023
+9
C
A
W
The human gut virome and its early life development are poorly understood. Prior studies have captured single-point assessments with the evolution of the infant virome remaining largely unexplored. We performed viral metagenomic sequencing on stool samples collected longitudinally from a cohort of 53 infants from age 2 weeks to 3 years (80.7 billion reads), and from their mothers (9.8 billion reads) to examine and compare viromes. The asymptomatic infant virome consisted of bacteriophages, nonhuman dietary/environmental viruses, and human-host viruses, predominantly picornaviruses. In contrast, human-host viruses were largely absent from the maternal virome. Previously undescribed, sequence-divergent vertebrate viruses were detected in the maternal but not infant virome. As infants aged, the phage component evolved to resemble the maternal virome, but by age 3, the human-host component remained dissimilar from the maternal virome. Thus, early life virome development is determined predominantly by dietary, infectious, and environmental factors rather than direct maternal acquisition.
7
Citation22
2
Save
Load More