AA
Anna Andrusaite
Author with expertise in Diversity and Function of Gut Microbiome
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
7
(57% Open Access)
Cited by:
240
h-index:
7
/
i10-index:
7
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Antibiotics induce sustained dysregulation of intestinal T cell immunity by perturbing macrophage homeostasis

Nicholas Scott et al.Oct 24, 2018
Macrophages in the healthy intestine are highly specialized and usually respond to the gut microbiota without provoking an inflammatory response. A breakdown in this tolerance leads to inflammatory bowel disease (IBD), but the mechanisms by which intestinal macrophages normally become conditioned to promote microbial tolerance are unclear. Strong epidemiological evidence linking disruption of the gut microbiota by antibiotic use early in life to IBD indicates an important role for the gut microbiota in modulating intestinal immunity. Here, we show that antibiotic use causes intestinal macrophages to become hyperresponsive to bacterial stimulation, producing excess inflammatory cytokines. Re-exposure of antibiotic-treated mice to conventional microbiota induced a long-term, macrophage-dependent increase in inflammatory T helper 1 (TH1) responses in the colon and sustained dysbiosis. The consequences of this dysregulated macrophage activity for T cell function were demonstrated by increased susceptibility to infections requiring TH17 and TH2 responses for clearance (bacterial Citrobacter rodentium and helminth Trichuris muris infections), corresponding with increased inflammation. Short-chain fatty acids (SCFAs) were depleted during antibiotic administration; supplementation of antibiotics with the SCFA butyrate restored the characteristic hyporesponsiveness of intestinal macrophages and prevented T cell dysfunction. Butyrate altered the metabolic behavior of macrophages to increase oxidative phosphorylation and also promoted alternative macrophage activation. In summary, the gut microbiota is essential to maintain macrophage-dependent intestinal immune homeostasis, mediated by SCFA-dependent pathways. Oral antibiotics disrupt this process to promote sustained T cell-mediated dysfunction and increased susceptibility to infections, highlighting important implications of repeated broad-spectrum antibiotic use.
16

Tissue-based IL-10 signalling in helminth infection limits IFNγ expression and promotes the intestinal Th2 response

Holly Webster et al.Aug 11, 2021
Type 2 immunity is activated in response to both allergens and helminth infection. It can be detrimental or beneficial, and there is a pressing need to better understand its regulation. The immunosuppressive cytokine IL-10 is known as a T helper 2 (Th2) effector molecule, but it is currently unclear whether IL-10 dampens or promotes Th2 differentiation during infection. Here we show that helminth infection in mice elicits IL-10 expression in both the intestinal lamina propria and the draining mesenteric lymph node, with higher expression in the infected tissue. In vitro, exogenous IL-10 enhanced Th2 differentiation in isolated CD4+ T cells, increasing expression of GATA3 and production of IL-5 and IL-13. The ability of IL-10 to amplify the Th2 response coincided with its suppression of IFNγ expression and, in vivo, we found that, in intestinal helminth infection, IL-10 receptor expression was higher on Th1 cells in the small intestine than on Th2 cells in the same tissue, or on any Th cell in the draining lymph node. In vivo blockade of IL-10 signalling during helminth infection resulted in an expansion of IFNγ+ and Tbet+ Th1 cells in the small intestine and caused a coincident decrease in IL-13, IL-5 and GATA3 expression by intestinal T cells. Together our data indicate that IL-10 signalling promotes Th2 differentiation during helminth infection at least in part by regulating competing Th1 cells in the infected tissue.
16
Citation3
0
Save
1

The small and large intestine contain transcriptionally related mesenchymal stromal cell subsets that derive from embryonic Gli1+ mesothelial cells

Simone Pærregaard et al.Aug 13, 2021
Summary Intestinal fibroblasts (FB) play essential roles in intestinal homeostasis. Here we show that the small and large intestinal lamina propria (LP) contain similar FB subsets that locate in specific anatomical niches and express distinct arrays of epithelial support genes. However, there were tissue specific differences in the transcriptional profile of intestinal FB subsets in the two sites. All adult intestinal LP mesenchymal stromal cells (MSC), including FB, smooth muscle cells (SMC) and pericytes derive from Gli1 -expressing embryonic precursors which we identify as mesothelial cells. Trajectory analysis suggested that adult SMC and FB derive from distinct embryonic intermediates, and that adult FB subsets develop in a linear trajectory from CD81 + FB. Finally, we show that colonic subepithelial PDGFRα hi FB comprise several functionally and anatomically distinct populations that originate from an Fgfr2 -expressing FB intermediate. Collectively our results provide novel insights into MSC diversity, location, function and ontogeny, with implications for our understanding of intestinal development, homeostasis and disease.
1
Citation2
0
Save
0

Perturbation of the gut microbiota by antibiotics results in accelerated breast tumour growth and metabolic dysregulation

Benjamin Kirkup et al.Feb 19, 2019
Background: Breast cancer is the second most prevalent cancer worldwide with around 1.7 million new cases diagnosed every year. Whilst prognosis is generally favourable in early stages, this worsens significantly in advanced disease. Therefore, it is pertinent to focus on mitigating factors that may slow growth or progression. Recently, the gut microbiome has been implicated in a wide-range of roles in tumour biology. Through modulation of immunity, the gut microbiota can improve the efficacy of several immunotherapies. However, despite the prevalence of breast cancer, there is still a lack of microbiota studies in this field, including exploring the influence of external microbiome-modulating factors such as antibiotics. We describe herein how disruption of the gut microbiota via antibiotics may be detrimental to patient outcomes through acceleration of tumour growth. Results: Supplementing animals with a cocktail of antibiotics leads to gut microbiota alterations and is accompanied by significant acceleration of tumour growth. Surprisingly, and distinct from previous microbiome-tumour studies, the mechanism driving these effects do not appear to be due to gross immunological changes. Analysis of intratumoural immune cell populations and cytokine production are not affected by antibiotic administration. Through global tumour transcriptomics, we have uncovered dysregulated gene expression networks relating to protein and lipid metabolism that are correlated with accelerated tumour growth. Fecal metabolomics revealed a reduction of the microbial-derived short-chain fatty acid butyrate that may contribute to accelerated tumour growth. Finally, through use of a routinely administered antibiotic in breast cancer patients, Cephalexin, we have shown that tumour growth is also significantly affected. Metataxanomic sequencing and analysis highlighted significant antibiotic-associated reductions in the butyrate producing genera Odoribacter and Anaeotruncus, and increased abundance of Bacteroides. Conclusions: Our data indicate that perturbation of the microbiota by antibiotics may have negative impacts on breast cancer patient outcomes. This is of importance as antibiotics are regularly prescribed to breast cancer patients undergoing mastectomy or breast reconstruction. We have also shown that the metabolic impact of disruption to the microbiome should be considered alongside the potent immunological effects. We believe our work lays the foundation for improving the use of antibiotics in patients, and with further investigation could potentially inform clinical practice.
0

Microbiota-derived butyrate inhibits cDC development via HDAC inhibition, diminishing their ability to prime T cells

Anna Andrusaite et al.Aug 1, 2024
Conventional dendritic cells (cDC) are central to maintaining the balance between protective immune responses and tolerance to harmless antigens, especially in the intestine. Short chain fatty acids (SCFAs) such as butyrate play critical roles in regulating intestinal immunity, but the underlying mechanisms remain unclear. Here we demonstrate that microbiota-derived butyrate alters intestinal cDC populations in vivo resulting in decreased numbers of the cDC2 lineage. By establishing a novel in vitro culture model, we show that butyrate has a direct and selective ability to repress the development of cDC2 from cDC precursors, an effect that is independent of G-protein coupled receptors (GPCRs) and is due to inhibition of histone deacetylase 3. Finally, cDC derived from pre-cDC in the presence of butyrate in vitro express lower levels of costimulatory molecules and have a decreased ability to prime naïve T cells. Together, our data show that butyrate affects the developmental trajectory of cDC, selectively repressing the cDC2 lineage and reducing their ability to stimulate T cells. These properties may help explain the ability of butyrate to maintain homeostasis in the intestine.
0

Antibiotic-induced disturbances of the gut microbiota result in accelerated breast tumour growth via a mast cell-dependent pathway

Benjamin Kirkup et al.Mar 8, 2020
The diverse community of commensal microbes that comprise the gut microbiota is known to play an integral role in human health, not least through its ability to regulate host immune responses and metabolic pathways. Alterations to the homeostasis of this community, including through the use of broad-spectrum antibiotics, have already been associated with the progression of several cancers, namely melanoma and liver. The aggressive nature of breast cancer (BrCa), largely due to its ability to metastasize early, has ranked the disease with the second highest mortality rate of all cancers globally. Yet the body of research into the complex relationship between the microbiota and BrCa is still limited. This study found that a depletion of the microbiota, through the administration of antibiotics, significantly increased the rate of primary tumour progression in mouse BrCa models. We show that antibiotic-induced microbiota disturbances lead to changes in behaviour of a relatively obscure tumour immune cell population: mast cells. We observed increases in tumour stroma-associated mast cells in antibiotic treated animals. Moreover, inhibition of mast cell degranulation, via cromolyn, slowed tumour progression in antibiotic treated animals but not in control animals. Thus, it appears that a perturbed microbiota drives stroma-associated mast cell recruitment and activation, which in turn promotes primary tumour growth through an as yet unknown mechanism.