CT
Carter Takacs
Author with expertise in Regulation of RNA Processing and Function
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
7
(71% Open Access)
Cited by:
1,777
h-index:
15
/
i10-index:
16
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Genetic compensation triggered by mutant mRNA degradation

Mohamed El-Brolosy et al.Apr 1, 2019
Genetic robustness, or the ability of an organism to maintain fitness in the presence of harmful mutations, can be achieved via protein feedback loops. Previous work has suggested that organisms may also respond to mutations by transcriptional adaptation, a process by which related gene(s) are upregulated independently of protein feedback loops. However, the prevalence of transcriptional adaptation and its underlying molecular mechanisms are unknown. Here, by analysing several models of transcriptional adaptation in zebrafish and mouse, we uncover a requirement for mutant mRNA degradation. Alleles that fail to transcribe the mutated gene do not exhibit transcriptional adaptation, and these alleles give rise to more severe phenotypes than alleles displaying mutant mRNA decay. Transcriptome analysis in alleles displaying mutant mRNA decay reveals the upregulation of a substantial proportion of the genes that exhibit sequence similarity with the mutated gene's mRNA, suggesting a sequence-dependent mechanism. These findings have implications for our understanding of disease-causing mutations, and will help in the design of mutant alleles with minimal transcriptional adaptation-derived compensation. Transcriptional adaptation, a genetic compensation process by which organisms respond to mutations by upregulating related genes, is triggered by mRNA decay and involves a sequence-dependent mechanism.
0
Citation831
0
Save
0

Estimating metazoan divergence times with a molecular clock

Kevin Peterson et al.Apr 14, 2004
Accurately dating when the first bilaterally symmetrical animals arose is crucial to our understanding of early animal evolution. The earliest unequivocally bilaterian fossils are approximately 555 million years old. In contrast, molecular-clock analyses calibrated by using the fossil record of vertebrates estimate that vertebrates split from dipterans (Drosophila) approximately 900 million years ago (Ma). Nonetheless, comparative genomic analyses suggest that a significant rate difference exists between vertebrates and dipterans, because the percentage difference between the genomes of mosquito and fly is greater than between fish and mouse, even though the vertebrate divergence is almost twice that of the dipteran. Here we show that the dipteran rate of molecular evolution is similar to other invertebrate taxa (echinoderms and bivalve molluscs) but not to vertebrates, which significantly decreased their rate of molecular evolution with respect to invertebrates. Using a data set consisting of the concatenation of seven different amino acid sequences from 23 ingroup taxa (giving a total of 11 different invertebrate calibration points scattered throughout the bilaterian tree and across the Phanerozoic), we estimate that the last common ancestor of bilaterians arose somewhere between 573 and 656 Ma, depending on the value assigned to the parameter scaling molecular substitution rate heterogeneity. These results are in accord with the known fossil record and support the view that the Cambrian explosion reflects, in part, the diversification of bilaterian phyla.
0
Citation462
0
Save
0

Nanog, Pou5f1 and SoxB1 activate zygotic gene expression during the maternal-to-zygotic transition

Miler Lee et al.Sep 20, 2013
After fertilization, maternal factors direct development and trigger zygotic genome activation (ZGA) at the maternal-to-zygotic transition (MZT). In zebrafish, ZGA is required for gastrulation and clearance of maternal messenger RNAs, which is in part regulated by the conserved microRNA miR-430. However, the factors that activate the zygotic program in vertebrates are unknown. Here we show that Nanog, Pou5f1 (also called Oct4) and SoxB1 regulate zygotic gene activation in zebrafish. We identified several hundred genes directly activated by maternal factors, constituting the first wave of zygotic transcription. Ribosome profiling revealed that nanog, sox19b and pou5f1 are the most highly translated transcription factors pre-MZT. Combined loss of these factors resulted in developmental arrest before gastrulation and a failure to activate >75% of zygotic genes, including miR-430. Our results demonstrate that maternal Nanog, Pou5f1 and SoxB1 are required to initiate the zygotic developmental program and induce clearance of the maternal program by activating miR-430 expression. This study investigates how zygotic transcription is initiated and the maternal transcripts cleared in the zebrafish embryo: using loss-of-function analyses, high-throughput transcriptome sequencing and ribosome footprinting, the important roles of pluripotency factors Nanog, Pou5f1 and SoxB1 during these processes are identified. This paper identifies key factors responsible for the initiation of the zygotic program of development during embryogenesis. Following fertilization, maternal factors direct development and trigger zygotic genome activation at the maternal-to-zygotic transition. Antonio Giraldez and colleagues use loss-of-function analyses, high-throughput transcriptome sequencing and ribosome footprinting to identify the important roles of pluripotency factors Nanog, Pou5f1 and SoxB1 in the initiation of zygotic transcription and the clearance of maternal transcripts in the zebrafish embryo. These findings point to possible linkage between mechanisms of embryonic development, induction of pluripotency and reprogramming.
0
Citation450
0
Save
0

Genetic compensation is triggered by mutant mRNA degradation

Mohamed El-Brolosy et al.May 22, 2018
Genetic compensation by transcriptional modulation of related gene(s) (also known as transcriptional adaptation) has been reported in numerous systems 1–3 ; however, whether and how such a response can be activated in the absence of protein feedback loops is unknown. Here, we develop and analyze several models of transcriptional adaptation in zebrafish and mouse that we show are not caused by loss of protein function. We find that the increase in transcript levels is due to enhanced transcription, and observe a correlation between the levels of mutant mRNA decay and transcriptional upregulation of related genes. To assess the role of mutant mRNA degradation in triggering transcriptional adaptation, we use genetic and pharmacological approaches and find that mRNA degradation is indeed required for this process. Notably, uncapped RNAs, themselves subjected to rapid degradation, can also induce transcriptional adaptation. Next, we generate alleles that fail to transcribe the mutated gene and find that they do not show transcriptional adaptation, and exhibit more severe phenotypes than those observed in alleles displaying mutant mRNA decay. Transcriptome analysis of these different alleles reveals the upregulation of hundreds of genes with enrichment for those showing sequence similarity with the mutated gene’s mRNA, suggesting a model whereby mRNA degradation products induce the response via sequence similarity. These results expand the role of the mRNA surveillance machinery in buffering against mutations by triggering the transcriptional upregulation of related genes. Besides implications for our understanding of disease-causing mutations, our findings will help design mutant alleles with minimal transcriptional adaptation-derived compensation.
0
Citation24
0
Save
0

A post-transcriptional regulatory code for mRNA stability during the zebrafish maternal-to-zygotic transition

Charles Vejnar et al.Mar 30, 2018
Post-transcriptional regulation is crucial to shape gene expression. During the Maternal-to-Zygotic Transition (MZT), thousands of maternal transcripts are regulated upon fertilization and genome activation. Transcript stability can be influenced by cis-elements and trans-factors, but how these inputs are integrated to determine the overall mRNA stability is unclear. Here, we show that most transcripts are under combinatorial regulation by multiple decay pathways during zebrafish MZT. To identify cis-regulatory elements, we performed a massively parallel reporter assay for stability-influencing sequences, which revealed that 3'-UTR poly-U motifs are associated with mRNA stability. In contrast, miR-430 target sequences, UAUUUAUU AU-rich elements (ARE), CCUC and CUGC elements emerged as the main destabilizing motifs in the embryo, with miR-430 and AREs causing mRNA deadenylation in a genome activation-dependent manner. To identify the trans-factors interacting with these cis-elements, we comprehensively profiled RNA-protein interactions and their associated regulatory activities across the transcriptome during the MZT. We find that poly-U binding proteins are preferentially associated with 3'-UTR sequences and stabilizing motifs, and that antagonistic sequence contexts for poly-C and poly-U binding proteins shape the binding landscape and magnitude of regulation across the transcriptome. Finally, we integrate these regulatory motifs into a machine learning model that accurately predicts the stability of mRNA reporters in vivo. Our findings reveal how mechanisms of post-transcriptional regulation are coordinated to direct changes in mRNA stability within the early zebrafish embryo.