CF
Charles Fulco
Author with expertise in Ribosome Structure and Translation Mechanisms
Bristol-Myers Squibb (United States), Broad Institute, Harvard University
+ 8 more
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
11
(82% Open Access)
Cited by:
301
h-index:
17
/
i10-index:
20
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
3

Cycling cancer persister cells arise from lineages with distinct programs

Yaara Oren et al.Jan 8, 2022
+20
M
M
Y
Non-genetic mechanisms have recently emerged as important drivers of cancer therapy failure1, where some cancer cells can enter a reversible drug-tolerant persister state in response to treatment2. Although most cancer persisters remain arrested in the presence of the drug, a rare subset can re-enter the cell cycle under constitutive drug treatment. Little is known about the non-genetic mechanisms that enable cancer persisters to maintain proliferative capacity in the presence of drugs. To study this rare, transiently resistant, proliferative persister population, we developed Watermelon, a high-complexity expressed barcode lentiviral library for simultaneous tracing of each cell's clonal origin and proliferative and transcriptional states. Here we show that cycling and non-cycling persisters arise from different cell lineages with distinct transcriptional and metabolic programs. Upregulation of antioxidant gene programs and a metabolic shift to fatty acid oxidation are associated with persister proliferative capacity across multiple cancer types. Impeding oxidative stress or metabolic reprogramming alters the fraction of cycling persisters. In human tumours, programs associated with cycling persisters are induced in minimal residual disease in response to multiple targeted therapies. The Watermelon system enabled the identification of rare persister lineages that are preferentially poised to proliferate under drug pressure, thus exposing new vulnerabilities that can be targeted to delay or even prevent disease recurrence.
0

Inherited Causes of Clonal Hematopoiesis of Indeterminate Potential in TOPMed Whole Genomes

Alexander Bick et al.May 6, 2020
+120
S
J
A
ABSTRACT Age is the dominant risk factor for most chronic human diseases; yet the mechanisms by which aging confers this risk are largely unknown. 1 Recently, the age-related acquisition of somatic mutations in regenerating hematopoietic stem cell populations was associated with both hematologic cancer incidence 2–4 and coronary heart disease prevalence. 5 Somatic mutations with leukemogenic potential may confer selective cellular advantages leading to clonal expansion, a phenomenon termed ‘Clonal Hematopoiesis of Indeterminate Potential’ (CHIP). 6 Simultaneous germline and somatic whole genome sequence analysis now provides the opportunity to identify root causes of CHIP. Here, we analyze high-coverage whole genome sequences from 97,691 participants of diverse ancestries in the NHLBI TOPMed program and identify 4,229 individuals with CHIP. We identify associations with blood cell, lipid, and inflammatory traits specific to different CHIP genes. Association of a genome-wide set of germline genetic variants identified three genetic loci associated with CHIP status, including one locus at TET2 that was African ancestry specific. In silico -informed in vitro evaluation of the TET2 germline locus identified a causal variant that disrupts a TET2 distal enhancer. Aggregates of rare germline loss-of-function variants in CHEK2 , a DNA damage repair gene, predisposed to CHIP acquisition. Overall, we observe that germline genetic variation altering hematopoietic stem cell function and the fidelity of DNA-damage repair increase the likelihood of somatic mutations leading to CHIP.
0
Citation22
0
Save
1

Genome-wide maps of enhancer regulation connect risk variants to disease genes

Joseph Nasser et al.Oct 24, 2023
+27
C
D
J
Abstract Genome-wide association studies have now identified tens of thousands of noncoding loci associated with human diseases and complex traits, each of which could reveal insights into biological mechanisms of disease. Many of the underlying causal variants are thought to affect enhancers, but we have lacked genome-wide maps of enhancer-gene regulation to interpret such variants. We previously developed the Activity-by-Contact (ABC) Model to predict enhancer-gene connections and demonstrated that it can accurately predict the results of CRISPR perturbations across several cell types. Here, we apply this ABC Model to create enhancer-gene maps in 131 cell types and tissues, and use these maps to interpret the functions of fine-mapped GWAS variants. For inflammatory bowel disease (IBD), causal variants are >20-fold enriched in enhancers in particular cell types, and ABC outperforms other regulatory methods at connecting noncoding variants to target genes. Across 72 diseases and complex traits, ABC links 5,036 GWAS signals to 2,249 unique genes, including a class of 577 genes that appear to influence multiple phenotypes via variants in enhancers that act in different cell types. Guided by these variant-to-function maps, we show that an enhancer containing an IBD risk variant regulates the expression of PPIF to tune mitochondrial membrane potential. Together, our study reveals insights into principles of genome regulation, illuminates mechanisms that influence IBD, and demonstrates a generalizable strategy to connect common disease risk variants to their molecular and cellular functions.
1
Citation10
0
Save
8

Cycling cancer persister cells arise from lineages with distinct transcriptional and metabolic programs

Yaara Oren et al.Oct 24, 2023
+11
H
M
Y
Abstract Non-genetic mechanisms have recently emerged as important drivers of therapy failure in cancer (Salgia and Kulkarni, 2018), where some cancer cells can enter a reversible drug-tolerant persister state in response to treatment (Vallette et al., 2019). While most cancer persisters, like their bacterial counterparts, remain arrested in the presence of drug, a rare subset of cancer persisters can re-enter the cell cycle under constitutive drug treatment (Sharma et al., 2010). Little is known about the non-genetic mechanisms that enable cancer persisters to maintain proliferative capacity in the presence of drug. Here, using time-lapse imaging, we found that cycling persisters emerge early in the course of treatment of EGFR-mutant lung cancer cells with the EGFR inhibitor osimertinib. To study this rare, transiently-resistant, proliferative persister population we developed Watermelon, a new high-complexity expressed barcode lentiviral library for simultaneous tracing each cell’s clonal origin, proliferative state, and transcriptional state. Analysis of Watermelon-transduced PC9 cells demonstrated that cycling and non-cycling persisters arise from different pre-existing cell lineages with distinct transcriptional and metabolic programs. The proliferative capacity of persisters is associated with an upregulation of antioxidant gene programs and a metabolic shift to fatty acid oxidation in specific subpopulations of tumor cells. Mitigating oxidative stress or blocking metabolic reprograming significantly alters the fraction of cycling persister cells. In human tumors, programs associated with cycling persisters were induced in malignant cells in response to multiple tyrosine kinase inhibitors. The Watermelon system enabled the identification of rare persister lineages, that are preferentially poised through specific gene programs to proliferate under drug pressure, thus exposing new vulnerabilities that can be targeted to delay or even prevent disease recurrence.
1

Compatibility logic of human enhancer and promoter sequences

Drew Bergman et al.Oct 24, 2023
+9
V
T
D
Abstract Gene regulation in the human genome is controlled by distal enhancers that activate specific nearby promoters. One model for the specificity of enhancer-promoter regulation is that different promoters might have sequence-encoded preferences for distinct classes of enhancers, for example mediated by interacting sets of transcription factors or cofactors. This “biochemical compatibility” model has been supported by observations at individual human promoters and by genome-wide measurements in Drosophila . However, the degree to which human enhancers and promoters are intrinsically compatible or specific has not been systematically measured, and how their activities combine to control RNA expression remains unclear. To address these questions, we designed a high-throughput reporter assay called enhancer x promoter (ExP) STARR-seq and applied it to examine the combinatorial compatibilities of 1,000 enhancer and 1,000 promoter sequences in human K562 cells. We identify a simple logic for enhancer-promoter compatibility – virtually all enhancers activated all promoters by similar amounts, and intrinsic enhancer and promoter activities combine multiplicatively to determine RNA output ( R 2 =0.82). In addition, two classes of enhancers and promoters showed subtle preferential effects. Promoters of housekeeping genes contained built-in activating sequences, corresponding to motifs for factors such as GABPA and YY1, that correlated with both stronger autonomous promoter activity and enhancer activity, and weaker responsiveness to distal enhancers. Promoters of context-specific genes lacked these motifs and showed stronger responsiveness to enhancers. Together, this systematic assessment of enhancer-promoter compatibility suggests a multiplicative model tuned by enhancer and promoter class to control gene transcription in the human genome.
1
Citation2
0
Save
6

Selective Enhancer Dependencies inMYC-Intact andMYC-Rearranged Germinal Center B-cell Diffuse Large B-cell Lymphoma

Ashwin Iyer et al.Oct 24, 2023
+15
R
A
A
High expression of MYC and its target genes define a subset of germinal center B-cell diffuse large B-cell lymphoma (GCB-DLBCL) associated with poor outcomes. Half of these high-grade cases show chromosomal rearrangements between the MYC locus and heterologous enhancer-bearing loci, while focal deletions of the adjacent non-coding gene PVT1 are enriched in MYC -intact cases. To identify genomic drivers of MYC activation, we used high-throughput CRISPR-interference (CRISPRi) profiling of candidate enhancers in the MYC locus and rearrangement partner loci in GCB-DLBCL cell lines and mantle cell lymphoma (MCL) comparators that lacked common rearrangements between MYC and immunoglobulin (Ig) loci. Rearrangements between MYC and non-Ig loci were associated with unique dependencies on specific enhancer subunits within those partner loci. Notably, fitness dependency on enhancer modules within the BCL6 super-enhancer ( BCL6 -SE) cluster regulated by a transcription factor complex of MEF2B, POU2F2, and POU2AF1 was higher in cell lines bearing a recurrent MYC::BCL6 -SE rearrangement. In contrast, GCB-DLBCL cell lines without MYC rearrangement were highly dependent on a previously uncharacterized 3' enhancer within the MYC locus itself (GCBME-1), that is regulated in part by the same triad of factors. GCBME-1 is evolutionarily conserved and active in normal germinal center B cells in humans and mice, suggesting a key role in normal germinal center B cell biology. Finally, we show that the PVT1 promoter limits MYC activation by either native or heterologous enhancers and demonstrate that this limitation is bypassed by 3' rearrangements that remove PVT1 from its position in cis with the rearranged MYC gene.CRISPR-interference screens identify a conserved germinal center B cell MYC enhancer that is essential for GCB-DLBCL lacking MYC rearrangements. Functional profiling of MYC partner loci reveals principles of MYC enhancer-hijacking activation by non-immunoglobulin rearrangements.
6
Citation2
0
Save
0

Rewriting regulatory DNA to dissect and reprogram gene expression

Gabriella Martyn et al.Dec 21, 2023
+13
H
M
G
Regulatory DNA sequences within enhancers and promoters bind transcription factors to encode cell type-specific patterns of gene expression. However, the regulatory effects and programmability of such DNA sequences remain difficult to map or predict because we have lacked scalable methods to precisely edit regulatory DNA and quantify the effects in an endogenous genomic context. Here we present an approach to measure the quantitative effects of hundreds of designed DNA sequence variants on gene expression, by combining pooled CRISPR prime editing with RNA fluorescence in situ hybridization and cell sorting (Variant-FlowFISH). We apply this method to mutagenize and rewrite regulatory DNA sequences in an enhancer and the promoter of PPIF in two immune cell lines. Of 672 variant-cell type pairs, we identify 497 that affect PPIF expression. These variants appear to act through a variety of mechanisms including disruption or optimization of existing transcription factor binding sites, as well as creation of de novo sites. Disrupting a single endogenous transcription factor binding site often led to large changes in expression (up to -40% in the enhancer, and -50% in the promoter). The same variant often had different effects across cell types and states, demonstrating a highly tunable regulatory landscape. We use these data to benchmark performance of sequence-based predictive models of gene regulation, and find that certain types of variants are not accurately predicted by existing models. Finally, we computationally design 185 small sequence variants (≤10 bp) and optimize them for specific effects on expression in silico. 84% of these rationally designed edits showed the intended direction of effect, and some had dramatic effects on expression (-100% to +202%). Variant-FlowFISH thus provides a powerful tool to map the effects of variants and transcription factor binding sites on gene expression, test and improve computational models of gene regulation, and reprogram regulatory DNA.
0
Citation2
0
Save
0

Activity-by-Contact model of enhancer specificity from thousands of CRISPR perturbations

Charles Fulco et al.May 6, 2020
+15
T
J
C
Mammalian genomes harbor millions of noncoding elements called enhancers that quantitatively regulate gene expression, but it remains unclear which enhancers regulate which genes. Here we describe an experimental approach, based on CRISPR interference, RNA FISH, and flow cytometry (CRISPRi-FlowFISH), to perturb enhancers in the genome, and apply it to test >3,000 potential regulatory enhancer-gene connections across multiple genomic loci. A simple equation based on a mechanistic model for enhancer function performed remarkably well at predicting the complex patterns of regulatory connections we observe in our CRISPR dataset. This Activity-by-Contact (ABC) model involves multiplying measures of enhancer activity and enhancer-promoter 3D contacts, and can predict enhancer-gene connections in a given cell type based on chromatin state maps. Together, CRISPRi-FlowFISH and the ABC model provide a systematic approach to map and predict which enhancers regulate which genes, and will help to interpret the functions of the thousands of disease risk variants in the noncoding genome.
1

Novel mechanism ofMYCderegulation in Multiple Myeloma

Mahshid Rahmat et al.Oct 24, 2023
+11
J
K
M
ABSTRACT MYC deregulation occurs in 67% of multiple myeloma (MM) cases and associates with progression and worse prognosis in MM. Enhanced MYC expression is known to be driven by translocation or amplification events, but it only occurs in 40% of MM patients. Here, we describe a new mechanism of MYC regulation, whereby epigenetic regulation of MYC by increased accessibility of a cell-type specific enhancer leads to increased MYC expression. We found enhancer activity does not associate with enhancer hijacking events. We identified specific binding of c-MAF, IRF4, and SPIB transcription factors to the enhancer can activate MYC . In addition, we discovered focal amplification of this specific enhancer in approximately 4% of MM patients. Together, our findings define a new epigenetic mechanism of MYC deregulation in MM beyond known translocations or amplifications and point to the importance of non-coding regulatory elements and their associated transcription factor networks as drivers of MM progression.
0

CRISPR-SURF: Discovering regulatory elements by deconvolution of CRISPR tiling screen data

Jonathan Hsu et al.May 6, 2020
+13
M
C
J
Tiling screens using CRISPR-Cas technologies provide a powerful approach to map regulatory elements to phenotypes of interest, but computational methods that effectively model these experimental approaches for different CRISPR technologies are not readily available. Here we present CRISPR-SURF, a deconvolution framework to identify functional regulatory regions in the genome from data generated by CRISPR-Cas nuclease, CRISPR interference (CRISPRi), or CRISPR activation (CRISPRa) tiling screens. We validated CRISPR-SURF on previously published and new data, identifying both experimentally validated and new potential regulatory elements. With CRISPR tiling screens now being increasingly used to elucidate the regulatory architecture of the non-coding genome, CRISPR-SURF provides a generalizable and accessible solution for the discovery of regulatory elements.
Load More